How many satellites are orbiting the Earth in 2016?

Image courtesy of ESA Note: The debris field shown in the image is an artist's impression based on actual data. However, the debris objects are shown at an exaggerated size to make them visible at the scale shown

Image courtesy of ESA
Note: The debris field shown in the image is an artist’s impression based on actual data. However, the debris objects are shown at an exaggerated size to make them visible at the scale shown

This is our annual update on the satellites currently orbiting the Earth.

How many satellites are orbiting the Earth?
According to the Index of Objects Launched into Outer Space maintained by United Nations Office for Outer Space Affairs (UNOOSA), there are currently 4 256 satellites currently orbiting the planet, an increase of 4.39% compared to this time last year.

221 satellites were launched in 2015, the second highest number in a single year, although it is below the record of 240 launched in 2014. 2016 may fall slightly short, as to date only 126 launches have occurred this year. The increase in satellites orbiting the Earth is less than the number launched last year, because satellites only have limited lifespans. The large communication satellites have expected lifetimes of 15 years and more, whereas the small satellites, such as CubeSat’s, may only have expected lifespans of 3 – 6 months.

How many of these orbiting satellites are working?
The Union of Concerned Scientists (UCS) details which of those orbiting satellites are operational and it is not as many as you think! According to their June 2016 update, there are currently only 1 419 operational satellites – only about one third of the number in orbit. This means there is quite a lot of useless metal hurtling around the planet! This is why there is a lot of interest from companies looking at how they capture and reclaim space debris, with methods such as space nets, slingshots or solar sails proposed.

What are all these satellites doing?
According the UCS data the main purposes for the operational satellites are:

  • Communications with 713 satellites
  • Earth observation/science with 374 satellites
  • Technology Demonstration/Development with 160 satellites
  • Navigation & Global Position with 105 satellites; and
  • Space Science with 67 satellites

It should be noted that some satellites do have multiple purposes. We will discuss the operational Earth observation satellites in more detail next week.

Who uses the satellite directly?
It’s interesting to note that there are four main types of users listed in the UCS database, although 17% of the satellites have multiple users we are concentrating on the main user:

  • 94 satellites listed with civil users: These tend to be educational institutes, although there are other national organisations also included. 46% of these satellites have a purpose of technology development, whilst Earth/Space science and observation account for another 43%.
  • 579 with commercial users: Commercial organisations and state organisations who want to sell the data they collect. 84% of these satellites focus on communications and global positioning services; of the remaining 12% are Earth observation satellites.
  • 401 with Government users: Mainly national Space organisations, together with other national and international bodies. 40% of these are communications and global positioning satellites; another 38% focus on Earth observation. Of the remainder space science and technology development have 12% and 10% respectively.
  • 345 with military users: Again communications, Earth observation and global positioning systems are the strong focus here with 89% of the satellites having one of these three purposes.

Which countries have launched satellites?
According to UNOOSA around 65 countries have launched satellites, although on the UCS database there are only 57 countries listed with operational satellites, again some satellites are listed with joint/multinational operators. The largest are:

  • USA with 576 satellites
  • China with 181 satellites
  • Russia with 140 satellites

The UK is listed as having 41 satellites, plus we’re involved in an additional 36 satellites that the European Space Agency has.

Remember when you look up!
Next time you out at look up at the night sky, remember that there is over two million kilograms of metal circling the Earth between you and the stars!

Spinning Python in Green Spaces

2016 map of green spaces in Plymouth, using Sentinel-2 data courtesy of Copernicus/ESA.

2016 map of green spaces in Plymouth, using Sentinel-2 data courtesy of Copernicus/ESA.

As students, we are forever encouraged to find work experience to develop our real-life skills and enhance our CV’s. During the early period of my second year I was thinking about possible work experience for the following summer. Thanks to my University department, I was able to find the Space Placements in INdustry (SPIN) scheme. SPIN has been running for 4 years now, advertising short summer placements at host companies. These provide a basis for which students with degrees involving maths/physics/computer science can get an insight into the thriving space sector. I chose to apply to Pixalytics, and three months later they accepted my application in late March.

Fast forward a few more months and I was on the familiar train down to Plymouth in my home county of Devon. Regardless of your origin, living in a new place never fails to confuse, but with perseverance, I managed to settle in quickly. In the same way I could associate my own knowledge from my degree (such as atmospheric physics, and statistics) to the subject of remote sensing, a topic which I had not previously learnt about. Within a few days I was at work on my own projects learning more on the way.

My first task was an informal investigation into Open data that Plymouth City Council (PCC) has recently uploaded onto the web. PCC are looking for ways to create and support innovative business ideas that could potentially use open data. Given their background, Pixalytics could see the potential in developing this. I used the PCC’s green space, nature reserve and neighbourhood open data sets and found a way to calculate areas of green space in Plymouth using Landsat/Sentinel 2 satellite data to provide a comparison.

Sentinel-2 Image of Plymouth from 2016. Data courtesy of Copernicus/ESA.

Sentinel-2 Image of Plymouth from 2016. Data courtesy of Copernicus/ESA.

There were a few challenges to overcome in using the multiple PCC data sets as they had different coordinate reference systems, which needed to be consistent to be used in GIS software. For example, the Nature Reserves data set was partly in WGS84 and partly in OSGB 1936. Green space is in WGS 84 and the neighbourhood boundaries are in OSGB 1936. This meant that after importing these data sets in GIS software, they wouldn’t line up. Also, the green space data set didn’t include landmarks such as the disused Plymouth City airport, and large areas around Derriford Hospital and Ernsettle. Using GIS software I then went on to find a way to classify and calculate areas of green space within the Plymouth city boundary. The Sentinel-2 which can be seen above, has a higher spatial resolution and allowed me to include front and back gardens.

My green space map for 2016 created from Sentinel 2 data is the most accurate, and gives a total area of green space within the Plymouth neighbourhood boundary of 43 square kilometres, compared with 28 square kilometres that PCC have designated within their dataset. There are some obvious explainable differences, but it would be interesting to explore this deeper.

My second project was to write computer code for the processing and mosaicking of Landsat Imagery. Pixalytics is developing products where the user can select an area of interest from a global map, and these can cause difficult if the area crosses multiple images. My work was to make these images as continuous as possible, accounting for the differences in radiances.

I ended up developing a Python package, some of whose functions include obtaining the WRS path and row from an inputted Latitude and Longitude, correcting for the difference in radiances, and clipping and merging multiple images. There is also code that helps reduce the visual impact of clouds on individual images by using the quality band of the Landsat 8 product. This project took up most of my time, however I don’t think readers would appreciate, yet alone read a 500 line python script, so this has been left out.

I’d like to take this opportunity to thank Andrew and Samantha for giving me an insight into this niche, and potentially lucrative area of science as it has given me some direction and motivation for the last year of my degree. I hope I’ve provided some useful input to Pixalytics (even if it is just giving Samantha a very long winded Python lesson), because they certainly have done with me!

 

Blog written by:
Miles Lemmer, SPIN Summer Placement student.
BSc. Environmental Physics, University of Reading.

Night-time Treats

This image of Rio de Janeiro was acquired on the night of July 20, 2012 by the VIIRS instrument aboard the Suomi NPP satellite. Data courtesy of NASA/NASA’s Earth Observatory.

This image of Rio de Janeiro was acquired on the night of July 20, 2012 by the VIIRS instrument aboard the Suomi NPP satellite. Data courtesy of NASA/NASA’s Earth Observatory.

The Opening Ceremony of the Rio Olympics featured a plane taking off from the Maracanã Stadium and treating us to a fantastic night flight over Rio. It was a beautiful sequence to celebrate the famous Brazilian aviator Alberto Santos-Dumont, for us at Pixalytics it led to a conversation about the beauty of night-time satellite imagery!

Currently, the best source of night-time imagery comes from Visible Infrared Imaging Radiometer Suite (VIIRS) which is one of five instruments aboard the Suomi National Polar-orbiting Partnership satellite launched on 28 October 2011. Although, if you look on Twitter you’ll also see a huge number of night-time images taken by astronauts aboard the International Space Station. This data has been used as the basis of the Cities at Night citizen science project whose aim is to create a Google maps style map of the world – as the astronauts are using cameras to take photos of the places that interest them, and there is no georeferencing information, citizens identify the cities pictures.

In contrast VIIRS is an orbiting satellite and so continually collecting calibrated and georeferenced data of the whole globe. In the day VIIRS is collecting optical and temperature data over both the land and ocean, while at night it collects temperature data and the night-time imagery using the 750 m spatial resolution Day/Night Band (DNB). Working through both the night and day, the DNB needs to be calibrated through several orders of magnitude in brightness to accommodate the dramatic contrast between solar reflection and the darkness of night. Its forerunner was the uncalibrated Operational Linescan System (OLS) on the Defense Meteorological Satellite Program (DMSP) satellites, whose primary aim was to study clouds, but when its data was declassified in the 1970s it generated a lot of interest in low light night-time observations.

The DNB VIIRS images, like the one at the top of the blog, show hubs of human activity and the road arteries that connect them, and so are of special interest to the Campaign for the Protection of Rural England who use these types of maps to protect dark skies. It also enables calculations of light pollution to be made, together with indications of the associated carbon emissions. The DNB can pick up many different phenomena. For example, aurorae are visible, as well as gas flares, volcanic activity, the lights of ships, sea ice and climatological monitoring of clouds. It’s even possible to see thunderstorms, although individual lightning flashes are hard to make out in these snapshots, the glow inside clouds caused by them are evident as bright strips with DNB imagery as seen in this image from over Louisiana, USA on 4 April 2012 (Miller et al., 2013).

Another interesting discovery in 2012 was the presence of a faint ‘nightglow’ in the upper atmosphere on moonless night over the Pacific. The DNB team were aiming to collect scenes of complete darkness for calibration purposes, but they found clouds were still clearly visible. This was due to an assortment of photochemical reactions, especially of the molecule fragment hydroxyl, which allows this nightglow to pick up subtle atmospheric phenomena such as gravity waves and the tops of anvil clouds.

Here we’ve gone from an aviation image inspired from 1903 to modern satellites, all via the Rio Olympics. It’s amazing where space can take you!

 

Blog written by Dr Louisa Reynolds and Andrew Lavender from Pixalytics Ltd.

Rio Olympics from space

Rio de Janeiro, Brazil, acquired on the 13th July 2016. Image courtesy of Copernicus/ESA.

Rio de Janeiro, Brazil, acquired on the 13th July 2016. Image courtesy of Copernicus/ESA.

The Opening Ceremony of the 2016 Summer Olympics takes place on Friday and so we’ve decided to revive our highly infrequent blog series ‘Can you see sporting venues from space?’ Previously we’ve looked for the Singapore and Abu Dhabi Formula One Grand Prix Circuits, but this week we’re focussing on the Rio Olympic venues.

Rio de Janeiro
The Games of the XXXI Olympiad will take place from the 5th to the 21st August in the Brazilian city of Rio de Janeiro. It is expected that more than ten thousand athletes will be competing for the 306 Olympic titles across 37 venues, 7 of which are temporary venues and 5 are outside Rio. The remaining twenty-five are permanent venues within the city, and 11 have been newly built for the Olympics and Paralympics. It is these permanent venues that we’ll see if we can spot from space!

The image at the top of the blog shows the Rio area, and you’ll notice the dark green area in the centre of the image which is the Tijuca National Park containing one of the world’s largest urban rainforest. It covers an area of 32 km².

Spatial Resolution
Spatial resolution is the key characteristic in whether sporting venues can be seen from space, and in simplistic terms it refers to the smallest object that can be seen on Earth from that sensor. For example, an instrument with a 10 m spatial resolution means that each pixel on its image represents 10 m, and therefore for something to be distinguishable on that image it needs to be larger than 10 m in size. There are exceptions to this rule, such as gas flares, which are so bright that they can dominate a much larger pixel.

We used the phrase ‘simplistic terms’ above because technically, the sensor in the satellite doesn’t actually see a square pixel, instead it sees an ellipse due to the angle through which it receives the signal. The ellipses are turned into square pixels by data processing to create the image. Spatial resolution is generally considered to have four categories:

  • Low spatial resolution: tend to have pixels between 50 m and 1 km.
  • Medium spatial resolution: tend to have pixels between 4 m and 50 m.
  • High spatial resolution: tend to have pixels between 1 m and 4 m.
  • Very high spatial resolution: tend to have pixels between 0.25 m to 1 m

Clearly with very high resolution imagery, such as that provided by commercial Worldview satellites owned by DigitalGlobe, can provide great images of the Olympic venues. However, as you know we like to work with data that is free-to-access, rather than paid for data. We’ve used Sentinel-2 data for this blog, which has a 10 m spatial resolution for its visible and near infra-red bands via the multispectral imager it carries.

Can we see the Olympic venues from space?
In our earlier parts of this infrequent series we couldn’t see the night race from the Singapore circuit, but we did identify the Abu Dhabi track and red roof of the Ferrari World theme park. So can we see the Olympics? Actually we can!

Image courtesy of Copernicus/ESA.

Image courtesy of Copernicus/ESA.

On the image to left, you’ll notice two bright white circles, one in the middle of the image and the second to the south-east. The bright circle in the middle is the Olympic Stadium which will be hosting the athletics and stands out clearly from the buildings surrounding it, to the South East is the Maracanã Stadium which will stage the opening and closing ceremonies together with the finals of the football tournaments.

Image courtesy of Copernicus/ESA.

Image courtesy of Copernicus/ESA.

In the bottom left of the image is small triangular shape which is location for the Aquatics Stadium, Olympic Tennis Centre, the Gymnastic and Wheelchair basketball arena, and the Carioca arenas which will host basketball, judo, wrestling and boccia. The bottom of the triangle juts out into the Jacarepagua Lagoon.

Image courtesy of Copernicus/ESA.

Image courtesy of Copernicus/ESA.

In the top left of the image, you can see the runway of the military Afonsos Air Force Base and north of the air base are a number of other Olympic venues, however these are hard to spot within their surroundings – these include the Equestrian Centre, Hockey Centre, BMX Centre, Whitewater canoe slalom course and the Deodoro stadium which will host the Rugby 7s and modern pentathlon.

It is possible to see the Olympic venues from space! Good luck to all the athletics competing over the next few weeks.

History Comes Around

Blue Marble image of the Earth taken by the crew of Apollo 17 on Dec. 7 1972. Image Credit: NASA

Blue Marble image of the Earth taken by the crew of Apollo 17 on Dec. 7 1972.
Image Credit: NASA

Remote sensing is a relatively young industry, but it doesn’t mean we don’t have history. We do. We shouldn’t it, and were reminded why this week as we bounced back through time.

We noticed an introductory tweet yesterday from the Earth Resources Observation and Science Centre (EROS) History Project established by the US Geological Survey. This project has created an amazing online archive of information about its involvement in remote sensing that contains documents, and videos, from 1960s/70s to the current day. A few of the archive items that caught our attention were:

News Release from United States Department of the Interior on the 21st September 1966 with the title ‘Earths Resources To Be Studied From Space’. What struck us was how the phrases could be from today.

  • ‘gathering facts about the natural resources of earth’
  • ‘the time is now right and urgent to apply space technology towards the solution of many pressing natural resources problems being compound by population and industrial growth’
  • ‘An opportunity to collect valuable resource data and use it to improve the quality of our environment’

Equally, the sessions from 1973 Management & Utilization of Remote Sensing Data Symposium, organized by the American Society of Photogrammetry, could easily be describing a current conference:

  • Role of Remote Sensing in Resource Management & Planning
  • Hydrological and Environmental Applications
  • Future Sensor and Information Handling Systems
  • Agricultural and Forestry Applications

We loved the 1980 User Frustrations with Landsat, which noted data quality issues like:

  • Desert scenes have no contrast
  • There’s no underwater detail in the image
  • The image is striped!

A reminder in the news release from 15 March 1989 on how close the world came to losing the Landsat archive. This release rescinded the order, made two weeks earlier, to shutdown Landsat 4 & 5 and to provide funding until a policy review of Landsat could be completed.

The archive is a wealth of interesting details about the history of US remote sensing, including the amount of data collected over the years to the more mundane, but no less fascinating, descriptions of the furniture required to set up EROS in the first instance! We’d highly recommend you have a look at this archive – although be warned, I lost a few hours in there whilst writing this blog!!

This week is also a big anniversary for Landsat-1 which was launched on the 23rd July 1972, and the first satellite image from it was received on the 26th July 1972 beginning the 44 year archive. It’s also the Landsat Science Team’s 2016 Summer meeting this week in South Dakota, and amongst the topics of discussion are future sensor capabilities for Landsat 10 – showing not much has changed from 1973!

Although remembering the past is important, it’s vital that we also look forward to the future. At the Landsat Science Team meeting, it was noted the target launch date for Landsat 9 is the 15th December 2020, and as discussed above they are already talking about Landsat 10!

Gliding Across The Ice

ESA’s Earth Explorer CryoSat. Image courtesy of ESA/AOES Medialab.

ESA’s Earth Explorer CryoSat. Image courtesy of ESA/AOES Medialab.

There’s been a flurry of reports in the last couple of weeks, reporting melting ice and retreating glaciers in Greenland and the Himalayas respectively.

A paper by McMillan et al (2016), titled ‘A high-resolution record of Greenland mass balance’ and published in Geophysical Research Letters earlier this month, highlighted that Greenland’s melting ice has contributed twice as much to sea level rise than in the previous twenty years. The research used CryoSat-2 radar altimetry between 1 January 2011 and 31 December 2014 to measure elevation changes in the Greenland ice.

The main instrument on ESA’s CryoSat-2 satellite is a Synthetic Aperture Radar (SAR)/Interferometric Radar Altimeter known as SIRAL, although also carries a second version of this instrument as a back-up. The SIRAL instrument has been enhanced to detect millimetre changes in the elevation of both ice-sheets and sea-ice. It sends out bursts of radar pulses, with an interval of 50 μs between them, covering a 250 m wide strip of the Earth and measures the time of the return signal to determine the height of the satellite above the Earth. It requires a very accurate measurement of its position to calculate this, and so it also carries a Doppler Orbit and Radio Positioning Integration by Satellite (DORIS) instrument to determine its orbit.

The research team discovered that the Greenland Ice Sheet lost an average of 269 ± 51 Gt/yr of snow and ice during the investigative period, which compared well with other independent measurements from sensors such as the Gravity Recovery and Climate Experiment (GRACE) satellite and results from climate models. This snow and ice loss corresponds to a 0.75 mm contribution to global sea-level rise each year.

It was reported this week that research undertaken by the Indian Space Research Organisation, Wadia Institute of Himalayan Geology and other institutions have revealed that the majority of the glaciers in India are retreating; albeit at different rates. Using remote sensing data up to 2006, the study looked at 82 glaciers in the Bhagirathi and Alaknanda river basins and found that there had been an overall loss of 4.6% of the glaciers within the region. The Dokriani glacier in Bhagirathi is retreating between 15 and 20 metres per year since 1995, whereas the Chorabari glacier in the Alaknanda basin is retreating 9-11 metres per year.

It’s interesting to read the retreating glacial picture alongside the research published by Schwanghart et al (2016), titled ‘Uncertainty in the Himalayan energy–water nexus: estimating regional exposure to glacial lake outburst floods’, in Environmental Research Letters. Here the research team completed the first region wide risk assessment of floods from glacial lakes, even though this only covered around a quarter dams in the Himalaya’s. The study mapped 257 dams against more than 2,300 glacial lakes within the region and found that over 20% of the dams are likely to be overwhelmed with flood water as rock systems that surround glacier-fed lakes fail. Due to the hydro-electric power needs of the region, more dams have been built in recent years, putting them closer to glacier-fed lakes.

The potential danger of this issue is demonstrated by the collapse of Zhangzangbo, a glacier-fed lake in southern Tibet, in 1981 where 20 million cubic meters of floodwater damaged hydroelectric dams and roads causing damage of approximately $4 million.

These three reports also show the potential danger melting ice and glaciers pose both locally and globally. Remote sensing data, particularly from satellites such as CryoSat-2, can help us monitor and understand whether this danger is increasing.

Remote Sensing and the DIKW Pyramid

DIKW PyramidSatellite remote sensing industry is evolving and anyone working in it needs to become familiar with the Data, information, Knowledge, Wisdom (DIKW) pyramid as this is one map, albeit simplistic, of the industry’s and our current journey.

Historically, satellite data was either sold as the original image or with a small amount of processing undertaken. If anyone wanted to do anything beyond basic processing, they had to do it themselves. However, things are changing.

According to a recent Euroconsult report, at least 3,600 small satellites will be launched over the next decade. The United Nations Office on Outer Space Affairs only lists 7,370 objects that have ever been launched into space, of which only 4,197 are still in orbit. We’re increasing the number of objects orbiting the Earth by 85% by smallsats alone, larger satellites will add even more.

The volume, variety and speed of this data collected by these satellites will present a step change not only in the type of applications companies will be able to offer, but, crucially, also in customer expectations – more and more they will be looking for added value.

One way of considering this is through the DIKW pyramid, which can be seen at the top of the blog, it’s credited to American organisational theorist Russell Ackoff in 1989, building on the ideas of Milan Zeleny two years earlier.

A simple summary of the pyramid starts with the collection of data which means nothing in its own right, it is simply data. Information is derived from data by asking the who, what, where, when and how questions. Knowledge is information to which expert skills and experience have been added to create more value – which is more profitable in a business context. Finally, wisdom is understanding what actions to take based on the knowledge you’ve gained.

Applying this to satellite remote sensing for agriculture, one example might be: data is the satellite data/image of the field. Information is knowing when the image was taken leading to where in the growing cycle the crop was. Knowledge is applying scientific algorithms to know the soil moisture, how much nutrients are in the soil or how much vegetation is present in various parts of the field. Wisdom is knowing what nutrients and fertilizers to apply, based on the knowledge gained, to improve crop yields.

A lot of Earth observation products are at the data or information level, with a few at the knowledge level, and even fewer at the wisdom level. Customers more and more want wisdom products, and they aren’t that interested in what was required to create them. When you add to this the additional types of geospatial information, e.g., optical and radar used together alongside airborne and in-field ground based measurements, the variety of open datasets and the new science and technological breakthroughs, things are going to look very different, very quickly.

We’d accept that the DIKW isn’t a perfect tool, nor a perfect representation of our industry, but it is simple, indicative and worth thinking about. We wrote about our intention to create products in an earlier blog. We’re a long way from the wisdom sector, but are hoping to be firmly within the knowledge sector and collaborating to create wisdom. It’s not easy and some companies will find it harder to do than others, but is going to be the future. How are you preparing?

Beijing Is Sinking

Envisat's ASAR sees Tianjin, China's third largest city.  Image courtesy of ESA.

Envisat’s ASAR sees Tianjin, China’s third largest city. Image courtesy of ESA.

Last month a paper was publishing in the Remote Sensing journal demonstrating that the city of Beijing is gradually sinking as a result of subsidence.

The paper ‘Imaging Land Subsidence Induced by Groundwater Extraction in Beijing (China) Using Satellite Radar Interferometry’ by Chen et al described work undertaken by a team of researchers using satellite images from between 2003 and 2011.

The research was undertaken using Interferometric Synthetic Aperture Radar (InSAR), which is a microwave based technique that uses phase measurements from two or more successive satellite SAR images to determine the Earth’s shape and topography and so to measure millimetre-scale changes.

The study used 41 images from Envisat-ASAR acquired from 2003 to 2010 collected in Stripmap mode with VV polarisation, together with 14 images from TerraSAR-X acquired from 2010 to 2011 also in Stripmap mode, but this time using HH polarisation. The images were processed alongside some baseline interferograms and the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model, at 90 m resolution, to produce land subsidence information. The results showed that parts of Beijing, such as the business district of Chaoyang, had sunk by as much as 11 cm within a year. In addition, they estimated that parts of the city had sunk by more than 75cm during the course of the eight year study period.

Land subsidence is often caused by human activities and the researchers identified the main cause to be the extraction of groundwater from beneath the city. Beijing has an enormous appetite for water and is the fifth most water-stressed city in the world according to a 2014 report published by the Nature Conservancy. However, the amount of groundwater extracted was not the only factor with the researchers also seeing relationships with soil type, aquifer type and distance to the pumping wells. In addition, given the number of buildings that have been erected in Beijing in the last fifteen years the additional weight is also likely to be contributing to the problem.

This sinking is not noticeable to the inhabitants of Beijing, but there is concern how this subsidence will impact the transport infrastructure, particularly high speed trains and research is already underway on this area. It is also not just Beijing that’s suffering from subsidence. The research also identified 45 other areas across China as having had or having significant land subsidence. In addition, Mexico City is sinking by between 6 cm and 28 cm per year and the Indonesian capital of Jakarta has dropped by around 8 cm per year; both are due to groundwater extraction. Even London is sinking, although in our case it only 1 – 2 millimetres per year!

Water is a precious resource and one that is necessary for growing populations and economies alike. Research such as this demonstrates why the world needs to get better at water conservation. If we continue as we are, there could be potentially serious consequences for parts of the globe.

Brexit and the Earth Observation Market

Artist's rendition of a satellite - mechanik/123RF Stock Photo

Artist’s rendition of a satellite – mechanik/123RF Stock Photo

Last week the UK voted to leave the European Union (EU). For us it was sad day, evidenced by the fact that on voting day Sam was at the European Association of Remote Sensing Laboratories (EARSeL) Symposium in Bonn, Germany; and I was in Brussels having attended the European Association of Remote Sensing Companies (EARSC) Annual General Meeting the day before – I should say we had both already submitted our postal votes!

This obvious topic for this week is what Brexit means for the UK Space Market, and in turn what it means for us:

European Space Agency (ESA)
ESA is not the EU. It has a different membership and different rules. The UK can remain part of ESA even if it leaves the EU, as evidenced by Norway and Switzerland’s membership, and even Canada’s associate membership.

However, at the ESA Ministerial in December member countries will need to declare how much money they intended to contribute towards ESA programmes. ESA operates a geo-return principle which dictates that countries cannot receive more money back than they put in, and therefore the decision on how much funding to commit at the December meeting will be vital for the UK Space Industry.

At the moment there is a power vacuum in this country following the resignation of the Prime Minister, and it would appear that no major decisions will be made on the future direction of the country until the new Prime Minister is appointed in September. Given the new Prime Minister will want to set up his own Executive arrangements and that the most pressing matter will be Brexit, it is not clear who will be taking the significant decision on the UK’s ESA Contribution.

Lack of commitment at this point has the potential to damage the UK Space Industry far more than Brexit.

European Union
Despite the assertion above that the EU and ESA are different bodies, they are linked organisations. They have a joint European Space Strategy and the EU is the biggest financial contributor to ESA’s budget. In addition, the EU owns a number of programmes such as Copernicus and the Galileo positioning, navigation & timing network.

Outside the EU the UK will probably no longer have a voice within these programmes and it is unlikely the siting of significant infrastructure related to these programmes, such as ground segments, will include this country. Hence, even remaining an active participant within ESA, it is hard to argue against the fact that the UK’s role in the future of the European space industry will diminish.

Single Market
The space industry, like other industries, currently benefits from the single market which makes it easier for European businesses to trade with each other. It is clear that most of our businesses, and politicians, feel that this is a benefit they’d like to keep. The question is whether they will be willing to pay the EU’s price?

If they do, then it is likely that change will be limited. However, if they don’t and the UK leaves the Single Market then trade with Europe will become more difficult. It will of course continue, but there may be tariffs, limitations on exports/imports and the potential for businesses to open or close offices within the UK or Europe to best maintain their access to both the UK and European markets.

Scientific Collaboration
We collaborate with a lot of EU companies, scientists and students. Now again there is no suggestion that this would stop, but everything will become more complicated.

  • How easy and quickly will people be able to get visa to travel to Europe or vice versa? This could impact attendance at meetings or conferences.
  • Will European Conferences still come to the UK?
  • What will be the impact on placement programmes such as ERASMUS? ERASMUS has different membership to the EU, like ESA, but will the UK still be as attractive to those students?

Of real scientific concern is the emerging anecdotal evidence that UK researchers are being removed from EU based funding bids, such as Horizon 2020, as the consortia fear their bids will be less attractive if the UK is involved. If true, this is will impact scientific research, at least in the short term until our involved in such programmes is clarified.

UK Space Industry
The UK has an expanding, exciting and innovative space industry and the future is certainly not dependant on us being part of the EU. However, it would be naïve to suggest that we don’t face challenges ahead following Brexit. There are a number of key elements we need in place to ensure that our industry can continue to thrive:

  1. Commitment to our continued membership of ESA, supported by funding at the December ministerial.
  2. Commitment that the resources the UK Science and Space sectors received via EU funding, such as Horizon 2020, must be replaced with equivalent UK based funding calls.
  3. Not to let the Brexit negotiations overtake everything else. For example, it must not stop continuing progress on elements such as a UK Spaceport.

Pixalytics
We have a variety of strong European links including:

  • European contracts
  • Scientific collaboration with European Researchers/Institutes
  • European placement students spending time working with us
  • Contracts that are either directly, or indirectly, based on ESA funding
  • Membership of European Associations

We believe we have a strong business, with good value products and a positive brand. However, like all other UK businesses, we are going to need to assess our current business strategy, and decisions we need to make, through the prism of Brexit as further information is known.

Conclusion
Almost one week on from the UK vote, I think our position is best summed up by paraphrasing the famous statement of US Secretary of Defense, Donald Rumsfeld:

There are some things we do not know, but there are also things we don’t know we don’t know and those will be the difficult ones.

Or to put it more succinctly, we face months, and years, of uncertainty! What does everyone else think?

Pixalytics Four Year Celebration!

Sutichak Yachaingham / 123 Stock Photo

Sutichak Yachaingham / 123 Stock Photo

The start of June marked the four-year anniversary of Pixalytics! We’d not realised that the time of year had come around again until Sam started receiving messages via her LinkedIn profile. A lot of small business owners are like us, busy working with their head down and they forget to look up and celebrate their successes and milestones.

So, although we had to be prompted to look up, we’re going to celebrate our milestone of Pixalytics thriving – or maybe surviving – for four years!

The last twelve months have been really successful for us, with the main highlights:

  • Doubling our company turnover.
  • Appointing our first additional full-time employee.
  • Having our book, Practical Handbook of Remote Sensing, published and being sold.
  • Winning a Space for Smarter Government Programme contract.
  • Expanding our EO products and services into AgriTech & flood mapping.
  • Being short-listed for the Plymouth Herald Small Business of the Year Award.
  • Being short-listed for the European Association of Remote Sensing Companies (EARSC) European EO Services Company Award.
  • Hosting two ERASMUS placements and other work experience students.

We wrote a blog last June identifying what we were hoping to achieve in the coming twelve months. The key things were developing our customer base, products, and services together with employing someone else full time. Those aims were definitely achieved!

Well, that’s enough of the celebrating! Like any other small business we’re much more interested in what’s in our future, than our past. We’ve still got plenty of challenges ahead:

  • Doubling our turnover was a big leap, and this year we’ve got to maintain that level and ideally grow more.
  • Despite having additional hands in the business, we still have more ideas than capacity. Some of the ideas we had last year have been taken forward by other companies, before we’ve had the chance to get around to them! We wish them success and will be watching with interest to see how they develop.
  • Marketing is hard work. None of us at Pixalytics are marketing experts, and it’s clear to us the difficulty of competing with firms who have sales and marketing teams promoting themselves at conferences and events. Our current approach is a combination of social media, and picking the events to attend. Both Sam and I are promoting Pixalytics this week, and then it’s back to the office next week to welcome our summer Space Placements in Industry (SPIN) student.

Our key target for the end of this year is to release an innovate series of automated Earth observation products and services that we can sell to clients across the world – we started to describe this journey here. We know we’ll be competing with companies much bigger than us and we know it’s not going to be easy, and to revisit the Samuel Beckett quote we used last year:

Ever tried. Ever failed. No matter. Try Again. Fail again. Fail better.

It still holds true for how we run our company. We try things. We fail. We succeed. We learn. We try new things.

We’re looking forward to what the next twelve months, or four years, have in store.