UKSEDS National Student Space Conference 2017

The 2017 UKSEDS National Student Space Conference took place last weekend at the University of Exeter and I was delighted to be asked to give a presentation.

UKSEDS, the acronym of the ‘UK Students for the Exploration and Development of Space’, is a charity dedicated to running events for space students and graduates. It is the UK branch of global community who have the aim of promoting space, space exploration and research.

The National Student Space Conference is in its 29th year, and 2017 was the first time I’d attended. I began the Saturday morning with a panel discussion on Exploration versus Exploitation with Dr David Parker from the European Space Agency, Cathrine Armour who leads the South West Centre of Excellence in Satellite Applications and Andy Bacon from Thales Alenia Space UK.

One of the key points raised in the panel surrounded the topic’s title, and that it wasn’t a contest between exploration and exploitation, but rather that exploration is generally followed up with exploitation e.g. even in the 19th and 20th century explorations were politically motivated. However exploration is risky, and so it may be difficult to produce favourable outcomes that can be exploited.

Traditionally, commercial organisations were risk averse and therefore exploration has often been supported by public bodies. The exploitation came later from commercial organisations, but there’s now an increased appetite for risk through venture and crowd funding with space being a particular focus.

We also have hindsight of how we’ve altered planet Earth, and so need to apply this to space where we’ve completed our first survey of the solar system. Exploitation may not be far away as there are companies already aiming to mine asteroids, for example. So alongside investing in science and technology, we also need to invest in the governance to ensure that any future exploitation is undertaken responsibly.

Closer to Earth, it can be considered that we’ve not yet fully exploiting the potential of orbiting satellites. For example, we could use them for generating solar energy as a twenty four hour resource. So whilst exploration does tend to proceed exploitation, in fact it is probably more accurate to say we loop between the two with each providing feedback into the other.

My presentation session was between the coffee break and lunch. I was last up and followed Cathrine Armour, Matt Cosby from Goonhilly Earth Station Ltd and Dr Lucy Berthoud from the University of Bristol & Thales Alenia Space UK. My presentation was on “Innovations in Earth observation” and can be found here.

I particularly enjoyed Lucy’s talk where she posed the question – Is there life on Mars? She also had a crowd pleasing set of practical experiments involving dry ice and a rock from a local beach, which was a bit daunting to follow! Whilst Lucy concluded that Mars has the elements needed for life to exist in terms of nutrients, an energy source and liquid water, any life would likely to be microscopic.

However, there are large costs associated with us visiting Mars to confirm this. Ignoring the obvious cost of the flight, the decontamination aspect is huge. As mission planners have to avoid both forward and backward contamination, i.e., us contaminating Mars and the material brought back contaminating the Earth. This brings us back around to the morning panel and why exploration always tends to come first, supported by national or international bodies.

Overall, I had a great time at the Conference and would wholly recommend any students who have interest in space join UKSEDS. Membership is free and it can give you access to great events, opportunities and contacts. You can join here!

How many satellites are orbiting the Earth in 2016?

Image courtesy of ESA Note: The debris field shown in the image is an artist's impression based on actual data. However, the debris objects are shown at an exaggerated size to make them visible at the scale shown

Image courtesy of ESA
Note: The debris field shown in the image is an artist’s impression based on actual data. However, the debris objects are shown at an exaggerated size to make them visible at the scale shown

This is our annual update on the satellites currently orbiting the Earth.

How many satellites are orbiting the Earth?
According to the Index of Objects Launched into Outer Space maintained by United Nations Office for Outer Space Affairs (UNOOSA), there are currently 4 256 satellites currently orbiting the planet, an increase of 4.39% compared to this time last year.

221 satellites were launched in 2015, the second highest number in a single year, although it is below the record of 240 launched in 2014. 2016 may fall slightly short, as to date only 126 launches have occurred this year. The increase in satellites orbiting the Earth is less than the number launched last year, because satellites only have limited lifespans. The large communication satellites have expected lifetimes of 15 years and more, whereas the small satellites, such as CubeSat’s, may only have expected lifespans of 3 – 6 months.

How many of these orbiting satellites are working?
The Union of Concerned Scientists (UCS) details which of those orbiting satellites are operational and it is not as many as you think! According to their June 2016 update, there are currently only 1 419 operational satellites – only about one third of the number in orbit. This means there is quite a lot of useless metal hurtling around the planet! This is why there is a lot of interest from companies looking at how they capture and reclaim space debris, with methods such as space nets, slingshots or solar sails proposed.

What are all these satellites doing?
According the UCS data the main purposes for the operational satellites are:

  • Communications with 713 satellites
  • Earth observation/science with 374 satellites
  • Technology Demonstration/Development with 160 satellites
  • Navigation & Global Position with 105 satellites; and
  • Space Science with 67 satellites

It should be noted that some satellites do have multiple purposes. We will discuss the operational Earth observation satellites in more detail next week.

Who uses the satellite directly?
It’s interesting to note that there are four main types of users listed in the UCS database, although 17% of the satellites have multiple users we are concentrating on the main user:

  • 94 satellites listed with civil users: These tend to be educational institutes, although there are other national organisations also included. 46% of these satellites have a purpose of technology development, whilst Earth/Space science and observation account for another 43%.
  • 579 with commercial users: Commercial organisations and state organisations who want to sell the data they collect. 84% of these satellites focus on communications and global positioning services; of the remaining 12% are Earth observation satellites.
  • 401 with Government users: Mainly national Space organisations, together with other national and international bodies. 40% of these are communications and global positioning satellites; another 38% focus on Earth observation. Of the remainder space science and technology development have 12% and 10% respectively.
  • 345 with military users: Again communications, Earth observation and global positioning systems are the strong focus here with 89% of the satellites having one of these three purposes.

Which countries have launched satellites?
According to UNOOSA around 65 countries have launched satellites, although on the UCS database there are only 57 countries listed with operational satellites, again some satellites are listed with joint/multinational operators. The largest are:

  • USA with 576 satellites
  • China with 181 satellites
  • Russia with 140 satellites

The UK is listed as having 41 satellites, plus we’re involved in an additional 36 satellites that the European Space Agency has.

Remember when you look up!
Next time you out at look up at the night sky, remember that there is over two million kilograms of metal circling the Earth between you and the stars!

Supercharging Satellite Data

Impression of EDRS high-speed feeder link relays to Europe. Image courtesy of ESA.

Impression of EDRS high-speed feeder link relays to Europe. Image courtesy of ESA.

Satellite remote sensing is set for a speed turbo boost with the launch of the less than snappily named EDRS. The first node of the European Data Relay System (EDRS), which is effectively a space based satellite data super highway, was launched last Saturday.

Most satellites send data back to Earth only as they pass over ground receiving stations. In addition, they have an orbital track that takes them across the entire planet, travelling at speeds of around 7 000 miles per hour, which means they are only in range of a single receiving station for approximately 10 minutes of each orbit. Given the size of Earth observation (EO) datasets, there are limits to the speed EO data can be sent back from space and it becomes increasingly difficult to download the full amount of data that can be collected. This is partially offset by having a network of ground receiving stations across the world. For example, Landsat has an international ground station (IGS) Network that includes three stations in the USA alongside 15 in other countries across the world.

The EDRS works in a different way. It is based in a much higher orbit than many EO satellites, an orbit called geostationary, which means that the satellite remains above the same place on Earth at all times and thus is in constant contact with its ground station. ERDS collects data from EO satellites by laser, and can stay in contact with the satellites for a much longer period because of its higher height. Once the EDRS has received the data, it immediately relays the data to its ground station.

EDRS-A was launched by piggybacking the Eutelsat 9B satellite, whilst a second satellite, curiously called EDRS-C, is due to launch in 2017. The International Space Station will also be connected up in 2018, and a third satellite is planned for launch in 2020 and will sit over the Asia-Pacific region. It will require further satellites to provide twenty-four hour all orbit data relay coverage.

After a significant testing phase, EDRS is expected to go into service this summer. The European Commission’s Copernicus Programme will be the first major customer, relaying data from its Sentinel satellites.

Once fully operational the system will be capable of relaying up to 50 terabytes of data each day at speeds of up to 1.8 gigabits per second, which is about 90 to 100 times faster than a typical internet connection.

This will dramatically improve access to time-critical data, and will benefit a variety of applications including:

  • Rescue and disaster relief teams that need EO data to focus and support their work.
  • Monitoring fast moving environmental issues such as forest fires, floods, pollution incidents and sea ice zones.
  • Government and security services that could utilise real time data to support their aircraft and unmanned aerial observation vehicles.
  • Monitoring of illegal fishing or piracy events.

EDRS will certainly supercharge EO and remote sensing, offering new opportunities for the provision of near real time applications to a variety of users.

Why the Current Internet Satellite Space Race Matters?

Artist's rendition of a satellite - mechanik/123RF Stock Photo

Artist’s rendition of a satellite – mechanik/123RF Stock Photo

The starting gun fired some time ago on the race to create a global satellite internet network. Last week OneWeb, backed by the Virgin Group and Qualcomm, stretched its legs with the announcement of a $500 million investment from companies including Airbus and Coke-Cola. The project intends to create a network of 648 microsatellites providing global high-speed internet and telephony services, to ensure everywhere on the planet has access. It’s planned these will be launched in batches, starting in 2017 with go live in 2019.

However, OneWeb isn’t the only runner in this race. Elon Musk’s Space X company, backed by Google, also has plans for a 4 000 strong internet satellite network; testing is due to begin in 2016 and current plans have it reaching full capacity around 2030.

These two developments could signal a change of pace in the satellite industry, as they will both be using mass produced satellites. Although neither project has realised the specifications for their microsatellites, some details are available. Both networks will be in Low Earth Orbits of around 1100 to 1200 km, weights will also be similar with OneWeb’s at 150 kg and Space X’s slightly more at around 200 kg. The microsatellite size is expected to be around half a square metre – although little has been announced about this to date; Airbus was recently awarded the build contract for OneWeb. Both constellations plan to use the microwave frequency Ku band, although Space X has also indicated interest in the Ka band.

Apart from mass production, the other element of these networks worth thinking about is the sheer quantity of satellites involved. The United Nations Office of Outer Space Affairs recorded 239 satellites launched last year, and this was the greatest number ever launched in a single year. According to the Union of Concerned Scientists last satellite database, from 31 January 2015, there are current 1 265 satellites in orbit around the Earth. Therefore, if both of these projects cross the finish line, they will more than quadruple the current number of satellites.

More objects in space increases the likelihood of potential collisions and impacts, and increases the potential space junk and debris in the atmosphere – although, OneWeb has already announced plans for deorbiting its satellites at end of life. This increase of objects in LEO does bring to mind the Kessler Syndrome hypothesized by Donald Kessler in 1978. He proposed a scenario where the density of objects in LEO is so great that the debris from a single collision between two objects would set off a cascade of subsequent collisions so great, that it would prevent any further spacecraft from passing through the LEO area; as explored in the 2013 film Gravity. This level of satellite concentration will need careful managing and monitoring.

In terms of Earth observation, the satellites will probably cause minimal impact. Due to their size, they will show up as rogue pixels on very high-resolution images, but wouldn’t register on the coarser resolution of systems such as Landsat. In terms of frequency bands, the Ku band isn’t generally used for Earth observation; although the altimeter, ALTIKA, onboard the joint French and Indian SARAL mission does operate at the Ka band and any use of that band by the Space X project will be worth watching. This isn’t the first time Earth observation has had to fight its corner for bandwidth, there is an ongoing battle with mobile data companies for use of these microwave frequencies that could also be used for wireless data transmission.

The internet satellite space race is an event that must be watched, it will change the satellite and telecommunication industries; and has the potential to change fundamentally what orbits the Earth.

What the UK has launched into space

Yesterday NASA announced its ambition to launch astronauts into space from American soil by 2017, and here the Government is currently assessing eight potential sites – including one in Cornwall – to be a UK spaceport by 2018. This nationalistic view of launch pads got me wondering about what the UK has previously launched in space and crucially, where from?

Artist's rendition of a satellite - paulfleet/123RF Stock Photo

Artist’s rendition of a satellite – paulfleet/123RF Stock Photo

Under the United Nations Convention on the Registration of Space Objects 1976 a country is deemed to have launched something into space if it does so from its own soil, or it organises someone else to launch it on its behalf. This convention also places obligations on each signatory country, and the UK is one, to make information about all such launches readily available. Details are on the UN website, and in June the UK Space Agency released the UK Registry of Outer Space Objects which makes interesting reading.

According to these sources the UK has launched 67 objects, mostly satellites, into space, beginning in April 1962 with the Ariel 1 satellite. At the time, the United Kingdom was the third country to operate a satellite, after the Soviet Union and the USA. Sadly Ariel 1 had a short four month operational lifespan as it was damaged by the Starfish Prime high-altitude nuclear test. Of all the UK’s launches 63% are still operational; a further 22% are in orbit, but non-operational; while the remaining 15% have decayed and returned to earth.

Ariel 1 was launched from the Cape Canaveral Air Force Station and since then another 17 launches have occurred from American soil, although the most popular UK launch site is French Guiana spaceport with 30 launches. We’ve also launched from Kazakhstan, Russia, Australia, India, Kenya and one even from a floating platform in the Pacific Ocean.

We’ve not launched objects every year; our last fallow year was 2004 and 2013 was the most prolific year with eight launches. Perhaps unsurprisingly a third of the satellites have been launched for telecommunications purposes, with another 18% for military communications. The vast majority of the remainder are for scientific, technological or engineering research purposes. Of the current operational satellites, 56% are in geosynchronous orbits, 30% in low earth orbits and the remaining 14% in medium earth orbits.

This doesn’t give quite the full picture of the UK’s space activities. There are an additional forty five satellites where the UK was not the launching country, but has issued an Outer Space Licence (described in our recent blog) which are listed in the Supplementary Registry of Space Objects on the UK Space Agency website.

The UK has a significant, and growing space sector, and who knows in a few years we may see satellites launched from our shores in Cornwall, Wales or Scotland. Exciting times ahead!

Random Numbers from Space

The concept of randomness, and creation of random numbers, has been part of human culture for thousands of years; in fifth century Athens, they considered elections undemocratic, everyone was considered equal and they selected people at random from the population to serve as the government. Perhaps our current politicians should take note, although the principle itself still exists in the UK through jury duty selection.

Random numbers are integral to modern society, from the obvious betting and gambling arenas, to sport, science, the arts and cryptography – all those little devices used to log into bank accounts are based on random numbers; in addition, they’re key to satellite communication systems.

Computerised random number generators have been around as long as programmers have programmed, and their algorithms produce a series of numbers that look random, but in fact they aren’t as they have a predetermined sequence. These are known as pseudo random numbers and are fine for many uses, but aren’t suitable to applications like secure communications or cryptography; for these we need to create true random numbers.

Lightning, Copyright: Taiga / 123RF Stock Photo

Lightning, Copyright: Taiga / 123RF Stock Photo

A true random number is one whose outcome is unpredictable, for example rolling a dice. Whilst this works for a single true random number, what if you want thousands or millions? Building a machine to throw millions of dice simultaneously isn’t sensible, instead random numbers are created using a physical property of the environment applied through a computer, for example decays in radioactive sources, snapshots of lava lamps or atmospheric noise caused by lightning strikes within thunderstorms. Last Thursday night would have been a goldmine to anyone using this methodology, as over 3,000 lightning strikes hit the country within three hours.

The space sector is now becoming involved in this area. In last week’s blog we reported on the two UK satellites recently launched; the UKube-1, built by Clyde Space in Glasgow, carries a true random number generator. The JANUS experiment will test the feasibility of using cosmic radiation to create true random numbers by detecting impacts from space particles through the single event upset effect methodology.

This could offer an alternative method of creating high volumes of random numbers for the communication and cryptography industries particularly, and gives one more way in which space can help.

Blog written in conjunction with Adam Mrozek, work placement student.