Small Satellites Step Forward

Artist's concept of one of the eight Cyclone Global Navigation Satellite System satellites deployed in space above a hurricane. Image courtesy of NASA.

Artist’s concept of one of the eight Cyclone Global Navigation Satellite System satellites deployed in space above a hurricane. Image courtesy of NASA.

We’re all about small satellites with this blog, after looking at the big beast that is GOES-R last week. Small satellites, microsatellites, cubesats or one of the other myriad of names they’re described as, have been in the news this month.

Before looking at what’s happening, we’re going to start with some definitions. Despite multiple terms being used interchangeably, they are different and are defined based around either their cubic size or their wet mass – ‘wet mass’ refers to the weight of the satellite including fuel, whereas dry mass is just the weight of satellite:

  • Small satellites (smallsats), also known as minisats, have a wet mass of between 100 and 500 kg.
  • Microsats generally have a wet mass of between 10 and 100 kg.
  • Nanosats have a wet mass of between 1 and 10 kg.
  • Cubesats are a class of nanosats that have a standard size. One Cubesat measures 10x10x10 cm, known as 1U, and has a wet mass of no more than 1.33 kg. However, it is possible to join multiple cubes together to form a larger single unit.
  • Picosats have a wet mass of between 0.1 and 1 kg
  • Femtosats have a wet mass of between 10 and 100 g

To give a comparison, GOES-R had a wet mass of 5 192 kg, a dry mass of 2 857 kg, and a size of 6.1 m x 5.6 m x 3.9 m.

Small satellites have made headlines for a number of reasons, and the first two came out of a NASA press briefing given by Michael Freilich, Director of NASA’s Earth science division on the 7th November. NASA is due to launch the Cyclone Global Navigation Satellite System (CYGNSS) on 12th December from Cape Canaveral. CYGNSS will be NASA’s first Earth Observation (EO) small satellite constellation. The mission will measure wind speeds over the oceans, which will be used to improve understanding, and forecasting, of hurricanes and storm surges.

The constellation will consist of eight small satellites in low Earth orbits, which will be focussed over the tropics rather than the whole planet. Successive satellites in the constellation will pass over the same area every twelve minutes, enabling an image of wind speed over the entire tropics every few hours.

Each satellite will carry a Delay Doppler Mapping Instrument (DDMI) which will receive signals from existing GPS satellites and the reflection of that same signal from the Earth. The scattered signal from the Earth will measure ocean roughness, from which wind speed can be derived. Each microsatellite will weigh around 29 kg and measure approximately 51 x 64 x 28 cm; on top of this will be solar panels with a span of 1.67 m.

The second interesting announcement as reported by Space News, was that NASA is planning to purchase EO data from other small satellite constellation providers, to assess the quality and usability of that data. They will be one-off purchases with no ongoing commitment, and will sit alongside data from existing NASA missions. However, it is difficult not to assume that a successful and cost effective trial could lead to ongoing purchases, which could replace future NASA missions.

It’s forecast that this initiative could be worth in the region of $25 million, and will surely interest the existing suppliers such as Planet or TerraBella; however, in the longer term it could also attract new players to the market.

Finally in non NASA small satellite news, there was joint announcement at the start of the month by the BRICS states (Brazil, Russia, India, China and South Africa) that they’d agreed to create a joint satellite constellation for EO. No further detail is available at this stage.

Once again, this shows what a vibrant, changing and evolving industry we work in!

Leave a Reply

Your email address will not be published. Required fields are marked *

Time limit is exhausted. Please reload CAPTCHA.