If no-one is there when an iceberg is born, does anyone see it?

Larsen C ice Shelf including A68 iceberg. Image acquired by MODIS Aqua satellite on 12th July 2017. Image courtesy of NASA.

The titular paraphrasing of the famous falling tree in the forest riddle was well and truly answered this week, and shows just how far satellite remote sensing has come in recent years.

Last week sometime between Monday 10th July and Wednesday 12th July 2017, a huge iceberg was created by splitting off the Larsen C Ice Shelf in Antarctica. It is one of the biggest icebergs every recorded according to scientists from Project MIDAS, a UK-based Antarctic research project, who estimate its area of be 5,800 sq km and to have a weight of more a trillion tonnes. It has reduced the Larsen C ice Shelf by more than twelve percent.

The iceberg has been named A68, which is a pretty boring name for such a huge iceberg. However, icebergs are named by the US National Ice Centre and the letter comes from where the iceberg was originally sited – in this case the A represents area zero degrees to ninety degrees west covering the Bellingshausen and Weddell Seas. The number is simply the order that they are discovered, which I assume means there have been 67 previous icebergs!

After satisfying my curiosity on the iceberg names, the other element that caught our interest was the host of Earth observation satellites that captured images of either the creation, or the newly birthed, iceberg. The ones we’ve spotted so far, although there may be others, are:

  • ESA’s Sentinel-1 has been monitoring the area for the last year as an iceberg splitting from Larsen C was expected. Sentinel-1’s SAR imagery has been crucial to this monitoring as the winter clouds and polar darkness would have made optical imagery difficult to regularly collect.
  • Whilst Sentinel-1 was monitoring the area, it was actually NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) instrument onboard the Aqua satellite which confirmed the ‘birth’ on the 12th July with a false colour image at 1 km spatial resolution using band 31 which measures infrared signals. This image is at the top of the blog and the dark blue shows where the surface is warmest and lighter blue indicates a cooler surface. The new iceberg can be seen in the centre of the image.
  • Longwave infrared imagery was also captured by the NOAA/NASA Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite on July 13th.
  • Similarly, NASA also reported that Landsat 8 captured a false-colour image from its Thermal Infrared Sensor on the 12th July showing the relative warmth or coolness of the Larsen C ice shelf – with the area around the new iceberg being the warmest giving an indication of the energy involved in its creation.
  • Finally, Sentinel-3A has also got in on the thermal infrared measurement using the bands of its Sea and Land Surface Temperature Radiometer (SLSTR).
  • ESA’s Cryosat has been used to calculate the size of iceberg by using its Synthetic Aperture Interferometric Radar Altimeter (SIRAL) which measured height of the iceberg out of the water. Using this data, it has been estimated that the iceberg contains around 1.155 cubic km of ice.
  • The only optical imagery we’ve seen so far is from the DEMIOS1 satellite which is owned by Deimos Imaging, an UrtheCast company. This is from the 14th July and revealed that the giant iceberg was already breaking up into smaller pieces.

It’s clear this is a huge iceberg, so huge in fact that most news agencies don’t think that readers can comprehend its vastness, and to help they give a comparison. Some of the ones I came across to explain its vastness were:

  • Size of the US State of Delaware
  • Twice the size of Luxembourg
  • Four times the size of greater London
  • Quarter of the size of Wales – UK people will know that Wales is almost an unofficial unit of size measurement in this country!
  • Has the volume of Lake Michigan
  • Has the twice the volume of Lake Erie
  • Has the volume of the 463 million Olympic-sized swimming pools; and
  • My favourite compares its size to the A68 road in the UK, which runs from Darlington to Edinburgh.

This event shows how satellites are monitoring the planet, and the different ways we can see the world changing.

Queen’s Speech Targets Space

Artist's rendition of a satellite - paulfleet/123RF Stock Photo

Artist’s rendition of a satellite – paulfleet/123RF Stock Photo

Last week was the State Opening of Parliament in the UK following the General Election, this included the Queen’s Speech which set out the legislation the Government intends introduce in the coming Parliament. As expected, Brexit dominated the headlines and so you may have missed the announcement of the Space Industry Bill.

The space sector has been a growth target for the Government since 2010, when it set an ambitious target of delivering 10% of the global space economy. The last UK Space Agency report covered 2014/15 and indicated the industry was worth £13.7bn – equivalent to 6.5% of the global space economy.

Our space industry is inextricably linked to Europe through the European Space Agency (ESA). Whilst, as we have described before, Brexit won’t affect our role in ESA, other projects such as Copernicus and Galileo are EU led projects and the UK’s future involvement isn’t clear. This Bill is part of the Government’s response, and its aim is to make the UK the most attractive place in Europe for commercial space activities.

We’ve previously written about the current UK licencing and regulatory arrangements for anyone who wants to launch an object into space, as detailed in the Outer Space Act 1986. This Bill will change that framework and has the following key elements:

  • New powers to license a wide range of spaceflight activities, including vertically-launched rockets, spaceplanes, satellite operations, spaceports and other technologies.
  • Comprehensive and proportionate regulatory framework to manage risk.
  • Measures to regulate unauthorised access and interference with spacecraft, spaceports and associated infrastructure.
  • Measures to promote public safety by providing a regulatory framework to cover operational insurance, indemnity and liability.

The Bill itself is based on the draft Spaceflight Bill published in February, together with the Government responses to the twelve recommendations of the Science and Technology Committee Report on the Draft Spaceflight Bill which was issued on the 22nd June.

There are still a number of questions to be answered over the coming months.

  • Limited Liability: Currently, the standard requirement is to have insurance of at least €60 million. However, the draft Bill suggests that insurance requirements will be determined as part of the license application process. Clearly, the different types of spaceflight will have different risks and so having flexibility makes sense; however, until the industry understands this aspects it will be a concerning area of uncertainty.
  • Spaceports: Previously, the Government intended to select a location for a spaceport, but last year this changed to offering licences for spaceports. This means there could be multiple spaceports in the country, but it is questionable whether there is sufficient business to support multiple sites. Given the specialist knowledge and skills needed to launch spacecraft, it is likely that a preferred site will eventually emerge, with or without Government involvement.
  • Speed of Change: Back in 2012 the Government acknowledged that regulations for launching objects into space needed to be revised as they didn’t suit smaller satellites. Since that time satellites have got even smaller, constellation launches are increasing rapidly and costs are decreasing. The legislation and regulations will need to evolve as quickly as the technology, if the UK is to be the most attractive place to do business. Can we do this?

The UK Space Industry is in for a roller coaster over the coming years. Brexit will undoubtedly be challenging, and will throw up many threats; whereas the Space Industry Bill will offer opportunities. To be successful companies will need to tread a careful path.

Locusts & Monkeys

Soil moisture data from the SMOS satellite and the MODIS instrument acquired between July and October 2016 were used by isardSAT and CIRAD to create this map showing areas with favourable locust swarming conditions (in red) during the November 2016 outbreak. Data courtesy of ESA. Copyright : CIRAD, SMELLS consortium.

Spatial resolution is a key characteristic in remote sensing, as we’ve previously discussed. Often the view is that you need an object to be significantly larger than the resolution to be able to see it on an image. However, this is not always the case as often satellites can identify indicators of objects that are much smaller.

We’ve previously written about satellites identifying phytoplankton in algal blooms, and recently two interesting reports have described how satellites are being used to determine the presence of locusts and monkeys!

Locusts

Desert locusts are a type of grasshopper, and whilst individually they are harmless as a swarm they can cause huge damage to populations in their paths. Between 2003 and 2005 a swarm in West Africa affected eight million people, with reported losses of 100% for cereals, 90% for legumes and 85% for pasture.

Swarms occur when certain conditions are present; namely a drought, followed by rain and vegetation growth. ESA and the UN Food and Agriculture Organization (FAO) have being working together to determine if data from the Soil Moisture and Ocean Salinity (SMOS) satellite can be used to forecast these conditions. SMOS carries a Microwave Imaging Radiometer with Aperture Synthesis (MIRAS) instrument – a 2D interferometric L-band radiometer with 69 antenna receivers distributed on a Y-shaped deployable antenna array. It observes the ‘brightness temperature’ of the Earth, which indicates the radiation emitted from planet’s surface. It has a temporal resolution of three days and a spatial resolution of around 50 km.

By combining the SMOS soil moisture observations with data from NASA’s MODIS instrument, the team were able to downscale SMOS to 1km spatial resolution and then use this data to create maps. This approach then predicted favourable locust swarming conditions approximately 70 days ahead of the November 2016 outbreak in Mauritania, giving the potential for an early warning system.

This is interesting for us as we’re currently using soil moisture data in a project to provide an early warning system for droughts and floods.

Monkeys

Earlier this month the paper, ‘Connecting Earth Observation to High-Throughput Biodiversity Data’, was published in the journal Nature Ecology and Evolution. It describes the work of scientists from the Universities of Leicester and East Anglia who have used satellite data to help identify monkey populations that have declined through hunting.

The team have used a variety of technologies and techniques to pull together indicators of monkey distribution, including:

  • Earth observation data to map roads and human settlements.
  • Automated recordings of animal sounds to determine what species are in the area.
  • Mosquitos have been caught and analysed to determine what they have been feeding on.

Combining these various datasets provides a huge amount of information, and can be used to identify areas where monkey populations are vulnerable.

These projects demonstrate an interesting capability of satellites, which is not always recognised and understood. By using satellites to monitor certain aspects of the planet, the data can be used to infer things happening on a much smaller scale than individual pixels.

Great Barrier Reef Coral Bleaching

Great Barrier Reef off the east coast of Australia where currents swirl in the water around corals. Image acquired by Landsat-8 on 23 August 2013. Image Courtesy of USGS/ESA.

Coral bleaching on the Great Barrier Reef in Australia was worse than expected last year, and a further decline is expected in 2017 according to the Great Barrier Reef Marine Park Authority. In a document issued this week they noted that, along with reefs across the world, the Great Barrier Reef has had widespread coral decline and habitat loss over the last two years.

We’ve written about coral bleaching before, as it’s a real barometer of climate change. To put the importance of the Great Barrier Reef into context:

  • It’s 2300 km long and covers an area of around 70 million football pitches;
  • Consists of 3000 coral reefs, which are made up from 650 different types of hard and soft coral; and
  • Is home to over 1500 types of fish and more than 100 varieties of sharks and rays.

Coral bleaching occurs when water stress causes coral to expel the photosynthetic algae, which give coral their colours, exposing the skeleton and turning them white. The stress is mostly due to higher seawater temperatures; although cold water stresses, run-off, pollution and high solar irradiance can also cause bleaching. Whilst bleaching does not kill coral immediately, it does put them at a greater risk of mortality from storms, poor water quality, disease and the crown-of-thorns starfish.

Last year the Great Barrier Reef suffered its worst bleaching on record, aerial and in-water surveys identified that 29% of shallow water coral reefs died in 2016; up from the original estimation of 22%. The most severe mortality was in an area to the north of Port Douglas where 70% of the shallow water corals died. This is hugely sad news to Sam and I, as we explored this area of the Great Barrier Reef ourselves about fifteen years ago.

Whilst hugely concerning, there is also a little hope! There was a strong recovery of coral in the south of the Great Barrier Reef, as bleaching and other impacts were less.

Images from the Copernicus Sentinel-2A satellite captured on 8 June 2016 and 23 February 2017 show coral turning bright white for Adelaide Reef, Central Great Barrier Reef. Data courtesy of Copernicus/ESA, and contains modified Copernicus Sentinel data (2016–17), processed by J. Hedley; conceptual model by C. Roelfsema

The coral bleaching event this year has also been captured by Sentinel-2. Scientists from ESA’s Sen2Coral project have used change detection techniques to determine bleaching. Images between January and April showed areas of coral turning bright white and then darkening, although it was unclear whether the darkening was due to coral recovery or dead coral being overgrown with algae. In-water surveys were undertaken, which confirmed the majority of the darkened areas were algal overgrowth.

This work has proved that coral bleaching can be seen from space, although it needs to be supported by in-situ work. ESA intends to develop a coral reef tool, which will be part of the open-source Sentinel Application Platform (SNAP) toolkit. This will enable anyone to monitor the health of coral reefs worldwide and hopefully, help protect these natural wonders.

Small Sea Salinity & Satellite Navigation Irrigation

Artists impression of the Soil Moisture and Ocean Salinity (SMOS) satellite. Image courtesy of ESA – P. Carril.

A couple of interesting articles came out in the last week relating to ESA’s Soil Moisture and Ocean Salinity (SMOS) mission. It caught our attention, as we’re currently knee deep in SMOS data at the moment, due to the soil moisture work we’re undertaking.

SMOS was launched in November 2009 and uses the interferometry technique to make worldwide observations of soil moisture over land and salinity over the ocean. Although its data has also been used to measure floating ice and calculate crop-yield forecasts.

The satellite carries the Microwave Imaging Radiometer using Aperture Synthesis (MIRAS) instrument, which is a 2D interferometric L-band radiometer with 69 antenna receivers distributed on a Y-shaped deployable antenna array. It has a temporal resolution of three days, with a spatial resolution of around 50 km.

A recent ESA article once again showed the versatility of SMOS, reporting that it was being used to measure the salinity in smaller seas, such as the Mediterranean. This was never an anticipated outcome due to radio interference and the land-sea boundary contamination – where the land and ocean data can’t be distinguished sufficiently to provide high quality measurements.

However, the interference has been reduced by shutting down illegal transmitters interrupting the SMOS signal and the land-sea contamination has been reduced by work at the Barcelona Expert Centre to change the data processing methodology.

All of this has meant that it’s possible to use SMOS to look at how water flows in and out of these smaller seas, and impact on the open oceans. This will help complement the understanding being gained from SMOS on ocean climate change, ocean acidification and the El Niño effect.

A fascinating second article described a new methodology for measuring soil moisture using reflected satellite navigation signals. The idea was originally from ESA engineer Manuel Martin-Neira, who worked on SMOS – which we accept is a bit more of a tenuous link, but we think it works for the blog! Manuel proposed using satellite navigation microwave signals to measure terrestrial features such as the topography of oceans.

This idea was further developed by former ESA employee Javier Marti, and his company Divirod, and they have created a product to try and reduce the overuse of irrigation. According to Javier, the system compares reflected and direct satnav signals to reveal the moisture content of soil and crops and could save around 30% of water and energy costs, and improve crop yields by 10-12%. It is a different methodology to SMOS, but the outcome is the same. The work is currently been tested with farmers around the Ogallala aquifer in America.

For anyone working in soil moisture, this is an interesting idea and shows what a fast moving field remote sensing is with new approaches and products being developed all the time.

Monitoring Fires From Space

Monitoring fires from space has significant advantages when compared to on-ground activity. Not only are wider areas easier to monitor, but there are obvious safety benefits too. The different ways this can be done have been highlighted through a number of reports over the last few weeks.

VIIRS Image from 25 April 2017, of the Yucatán Peninsula showing where thermal bands have picked-up increased temperatures. Data Courtesy of NASA, NASA image by Jeff Schmaltz, LANCE/EOSDIS Rapid Response.

Firstly, NASA have released images from different instruments, on different satellites, that illustrate two ways of how satellites can monitor fires.

Acquired on the 25 April 2017, an image from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite showed widespread fire activity across the Yucatán Peninsula in South America. The image to the right is a natural colour image and each of the red dots represents a point where the instrument’s thermal band detected temperatures higher than normal.

False colour image of the West Mims fire on Florida/Georgia boundary acquired by MODIS on 02 May 2017. Data courtesy of NASA. NASA image by Jeff Schmaltz, LANCE/EOSDIS Rapid Response.

Compare this to a wildfire on Florida-Georgia border acquired from NASA’s Aqua satellite on the 02 May 2017 using the Moderate Resolution Imaging Spectroradiometer (MODIS). On the natural colour image the fires could only be seen as smoke plumes, but on the left is the false colour image which combines infrared, near-infrared and green wavelengths. The burnt areas can be clearly seen in brown, whilst the fire itself is shown as orange.

This week it was reported that the Punjab Remote Sensing Centre in India, has been combining remote sensing, geographical information systems and Global Positioning System (GPS) data to identify the burning of crop stubble in fields; it appears that the MODIS fire products are part of contributing the satellite data. During April, 788 illegal field fires were identified through this technique and with the GPS data the authorities have been able to identify, and fine, 226 farmers for undertaking this practice.

Imaged by Sentinel-2, burnt areas, shown in shades of red and purple, in the Marantaceae forests in the north of the Republic of Congo.
Data courtesy of Copernicus/ESA. Contains modified Copernicus Sentinel data (2016), processed by ESA.

Finally, a report at the end of April from the European Space Agency described how images from Sentinel-1 and Senintel-2 have been combined to assess the amount of forest that was burnt last year in the Republic of Congo in Africa – the majority of which was in Marantaceae forests. As this area has frequent cloud cover, the optical images from Sentinel-2 were combined with the Synthetic Aperture Radar (SAR) images from Sentinel-1 that are unaffected by the weather to offer an enhanced solution.

Sentinel-1 and Sentinel-2 data detect and monitor forest fires at a finer temporal and spatial resolution than previously possible, namely 10 days and 10 m, although the temporal resolution will increase to 5 days later this year when Sentinel-2B becomes fully operational.  Through this work, it was estimated that 36 000 hectares of forest were burnt in 2016.

Given the danger presented by forest fires and wildfires, greater monitoring from space should improve fire identification and emergency responses which should potentially help save lives. This is another example of the societal benefit of satellite remote sensing.

Brexit Biting for UK Space Industry

Artist's rendition of a satellite - mechanik/123RF Stock Photo

Artist’s rendition of a satellite – mechanik/123RF Stock Photo

UK companies involved in European Commission space programmes face an uncertain future according to media reports over the last week. The Financial Times reported that the European Commission wanted two key clauses in the contracts for work on the next part of the €10 bn Galileo Satellite Navigation System. These would allow the Commission to:

  • Cancel the contracts, without penalty, of any supplier who is no longer based in an European Union (EU) member state; and then
  • Charge that supplier all costs associated with finding their replacements.

Clearly, this poses a huge risk to UK companies given the fact that the UK has indicated its intention to leave the EU in 2019 by triggering Article 50. We wrote about the potential impacts of Brexit last year, and whilst we did pick up concerns over Galileo we didn’t see this coming!

Should the UK Space Industry be concerned?
Yes!

Despite reports to the contrary, this does not mean we are leaving the European Space Agency (ESA). We are very much remaining part of ESA, something that was confirmed at the ministerial in December. This solely relates to programmes owned, and funded, by the European Union (EU). However, it is concerning for two key reasons:

  • Anyone who has tried to negotiate contract terms with large governmental organisations will be aware that it tends to be a binary take it or leave it scenario. Therefore, if these clauses are in the contract, then it is highly likely companies will have to sign up to them to get the work.
  • It may not just be Galileo, the Copernicus Programme could be next. Copernicus is also an EU programme, and therefore it has to be a possibility that they may apply the same clauses to future Copernicus tenders. Galileo isn’t something Pixalytics is involved with, but if this was extended to Copernicus we’d be potentially impacted and would need to make choices.

What Can UK Companies Do?
The options are limited:

  • Bid anyway! Accept the potential financial risk, or hope that it will get resolved within the various Brexit negotiations. Given the size of these contracts, it will be a brave CEO who goes down this route.
  • Not bidding for any Galileo contract is probably the financially prudent option, but equally it removes a significant revenue stream.
  • Move to another European Country. I think there will be a number of companies who will be looking at moving some, or all, of their operations to another EU member state.

Any Causes For Optimism?
Not really, but there are tiny strands of hope.

  • Security – A key issue with Galileo is security. Currently, all EU members have agreements on security and when the UK leaves the EU, it leaves that agreement. Of course, security is just one of hundreds of agreements the UK will be hoping to discuss with the EU through Brexit negations. If security agreements are reached with the UK, maybe the position will change.
  • UK Election – Whilst writing this blog, the UK Prime Minister has announced a General Election in June. Parliamentary changes may influence the type of Brexit we have, but again it is highly unlikely.

It was fairly obvious, despite the contrary political rhetoric, that Brexit would have huge consequences on the UK’s relationship with Europe.

The UK’s space industry looks as though it will be at the forefront of those consequences. Forget 2019, the bite of Brexit is being felt today!

Remote Sensing Goes Cold

Average thickness of Arctic sea ice in spring as measured by CryoSat between 2010 and 2015. Image courtesy of ESA/CPOM

Remote sensing over the Polar Regions has poked its head above the ice recently.

On the 8th February The Cryosphere, a journal of the European Geosciences Union, published a paper by Smith et al titled ’Connected sub glacial lake drainage beneath Thwaites Glacier, West Antarctica’. It described how researchers used data from ESA’s CryoSat-2 satellite to look at lakes beneath a glacier.

This work is interesting from a remote sensing viewpoint as it is a repurposing of Cryosat-2’s mission. It’s main purpose is to measure the thickness of the ice sheets and marine ice cover using its Synthetic Aperture Radar (SAR)/Interferometric Radar Altimeter, known as SIRAL, and it can detect millimetre changes in the elevation of both ice-sheets and sea-ice.

The team were able to use this data to determine that the ice of the glacier had subsided by several metres as water had drained away from four lakes underneath. Whilst the whole process took place between June 2012 and January 2014, the majority of the drainage happened in a six month period. During this time it’s estimated that peak drainage was around 240 cubic metre per second, which is four times faster than the outflow of the River Thames into the North Sea.

We’ve previously highlighted that repurposing data – using data for more purposes than originally intended – is going to be one of the key future innovation trends for Earth Observation.

Last week, ESA also described how Sentinel-1 and Sentinel-2 data have been used over the last five months to monitor a crack in the ice near to the Halley VI research base of the British Antarctic Survey (BAS). The crack, known as Halloween Crack, is located on the Brunt ice Shelf in the Wedell Sea sector of Antarctica and was identified last October. The crack grew around 600 m per day during November and December, although it has since slowed to only one third of that daily growth.

Since last November Sentinel-2 has been acquiring optical images at each overflight, and this has been combined with SAR data from the two Sentinel-1 satellites. This SAR data will be critical during the Antarctic winter when there are only a few hours of daylight and a couple of weeks around mid-June when the sun does not rise.

This work hit the headlines as BAS decided to evacuate their base for the winter, due to the potential threat. The Halley VI base, which was only 17km from the crack, is the first Antarctic research station to be specifically designed to allow relocation to cope with this sort of movement in the ice shelf. It was already planned to move the base 23 km further inland, and this was successfully completed on the 2nd February. Further movement will depend on how the Halloween Crack develops over the winter.

Finally, the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) project was announced this week at the annual meeting of the American Association for the Advancement of Science. Professor Markus Rex outlined the project, which will sail a research vessel into the Arctic sea ice and let it get stuck so it can drift across the North Pole. The vessel will be filled with a variety of remote sensing in-situ instruments, and will aim to collect data on how the climate is changing in this part of the world through measuring the atmosphere-ice-ocean system.

These projects show that the Polar Regions have a lot of interest, and variety, for remote sensing.

Supporting Chimpanzee Conservation from Space

Gombe National Park, Tanzania. Acquired by Sentinel-2 in December 2016. Image courtesy of ESA.

Being able to visualise the changing face of the planet over time is one of the greatest strengths of satellite remote sensing. Our previous blog showed how Dubai’s coastline has evolved over a decade, and last week NASA described interesting work they’re doing on monitoring habitat loss for chimpanzees in conjunction with the Jane Goodall Institute.

Jane Goodall has spent over fifty years working to protect and conserve chimpanzees from the Gombe National Park in Tanzania, and formed the Jane Goodall Institute in 1977. The Institute works with local communities to provide sustainable conservation programmes.

A hundred years ago more than one million chimpanzees lived in Africa, today the World Wildlife Fund estimate the population may only be around 150,000 to 250,000. The decline is stark. For example, the Ivory Coast populations have declined by 90% within the last twenty years.

One of the key factors contributing to this decline is habitat loss, mostly through deforestation; although other factors such as hunting, disease and illegal capture also contributed.

Forests cover around 31% of the planet, and deforestation occurs when trees are removed and the land has another use instead of being a forest. In chimpanzee habitats, the deforestation is mostly due to logging, mining and drilling for oil. This change in land use can be monitored from space using remote sensing. Satellites produce regular images which can be used to monitor changes in the natural environment, in turn giving valuable information to conservation charities and other organisations.

In 2000 Lilian Pintea, from the Jane Goodall Institute, was shown Landsat images comparing the area around the Gombe National Park in 1972 and 1999. The latter image showed huge deforestation outside the park’s boundary. The Institute have continued to use Landsat imagery to monitor what is happening around the National Park. In 2009 they began a citizen science project with local communities giving them smartphones to report their observations. Combining these with ongoing satellite data from NASA has helped develop and implement local plans for land use and protection of the forests. Further visualisation of this work can be found here. The image at the top was acquired Sentinel-2 in December 2016 and shows the Gombe National Park, although it is under a little haze.

The satellite data supplied by NASA comes from the Landsat missions, which currently have an archive of almost forty-five years of satellite data, which is freely available to anyone. We also used Landsat for data in our Dubai animation last week. Landsat captures optical data, which means it operates in a similar manner to the human eye – although the instruments also have infrared capabilities. However, one drawback of optical instruments is that they cannot see through clouds. Therefore, whilst Landsat is great for monitoring land use when there are clear skies, it can be combined with synthetic aperture radar (SAR), from the microwave spectrum, as it can see through both clouds and smoke. This combination enables land use and land change to monitored anywhere in the world. Using the freely available Landsat and Sentinel-1 SAR data you could monitor what is happening to the forests in your neighbourhoods.

Satellite data is powerful tool for monitoring changes in the environment, and with the archive of data available offers a unique opportunity to see what has happened over the last four decades.

Earth Observation Looking Good in 2017!

Artist's rendition of a satellite - paulfleet/123RF Stock Photo

Artist’s rendition of a satellite – paulfleet/123RF Stock Photo

2017 is looking like an exciting one for Earth Observation (EO), judging by the number of significant satellites planned for launch this year.

We thought it would be interesting to give an overview of some of the key EO launches we’ve got to look forward to in the next twelve months.

The European Space Agency (ESA) has planned launches of:

  • Sentinel-2B in March, Sentinel-5p in June and Sentinel-3B in August – all of which we discussed last week.
  • ADM-Aeolus satellite is intended to be launched by the end of the year carrying an Atmospheric Laser Doppler Instrument. This is essentially a lidar instrument which will provide global measurements of wind profiles from ground up to the stratosphere with 0.5 to 2 km vertical resolution.

From the US, both NASA and NOAA have important satellite launches:

  • NASA’s Ionospheric Connection Explorer (ICON) Mission is planned for June, and will provide observations of Earth’s ionosphere and thermosphere; exploring the boundary between Earth and space.
  • NASA’s ICESat-2 in November that will measure ice sheet elevation, ice sheet thickness changes and the Earth’s vegetation biomass.
  • In June NOAA will be launching the first of its Joint Polar Satellite System (JPSS) missions, a series of next-generation polar-orbiting weather observatories.
  • Gravity Recovery And Climate Experiment – Follow-On (GRACE_FO) are a pair of twin satellites to extend measurements from the GRACE satellite, maintaining data continuity. These satellites use microwaves to measure the changes in the Earth’s gravity fields to help map changes in the oceans, ice sheets and land masses. It is planned for launch right at the end of 2017, and is a partnership between NASA and the German Research Centre for Geosciences.

Some of the other launches planned include:

  • Kanopus-V-IK is a small Russian remote sensing satellite with an infrared capability to be used for forest fire detection. It has a 5 m by 5 m spatial resolution over a 2000 km swath, and is planned to be launched next month.
  • Vegetation and Environment monitoring on a New MicroSatellite (VENµS), which is partnership between France and Israel has a planned launch of August. As its name suggests it will be monitoring ecosytems, global carbon cycles, land use and land change.
  • KhalifaSat is the third EO satellite of United Arab Emirates Institution for Advanced Science and Technology (EIAST). It is an optical satellite with a spatial resolution of 0.75 m for the visible and near infrared bands.

Finally, one of the most intriguing launches involves three satellites that form the next part of India’s CartoSat mission. These satellites will carry both high resolution multi- spectral imagers and a panchromatic camera, and the mission’s focus is cartography. It’s not these three satellites that make this launch intriguing, it is the one hundred other satellites that will accompany them!

The Indian Space Research Organisation’s Polar Satellite Launch Vehicle, PSLV-C37, will aim to launch a record 103 satellites in one go. Given that the current record for satellites launched in one go is 37, and that over the last few years we’ve only had around two hundred and twenty satellites launched in an entire year; this will be a hugely significant achievement.

So there you go. Not a fully comprehensive list, as I know there will be others, but hopefully it gives you a flavour of what to expect.

It certainly shows that the EO is not slowing down, and the amount of data available is continuing to grow. This of course gives everyone working in the industry more challenges in terms of storage and processing power – but they are good problems to have. Exciting year ahead!