How to Measure Heights From Space?

Combining two Sentinel-1A radar scans from 17 and 29 April 2015, this interferogram shows changes on the ground that occurred during the 25 April earthquake that struck Nepal. Contains Copernicus data (2015)/ESA/Norut/PPO.labs/COMET–ESA SEOM INSARAP study

Combining two Sentinel-1A radar scans from 17 and 29 April 2015, this interferogram shows changes on the ground that occurred during the 25 April earthquake that struck Nepal. Contains Copernicus data (2015)/ESA/Norut/PPO.labs/COMET–ESA SEOM INSARAP study

Accurately measuring the height of buildings, mountains or water bodies is possible from space. Active satellite sensors send out pulses of energy towards the Earth, and measure the strength and origin of the energy received back enabling them to determine of the heights of objects struck by the pulse energy on Earth.

This measurement of the time it takes an energy pulse to return to the sensor, can be used for both optical and microwave data. Optical techniques such as Lidar send out a laser pulse; however within this blog we’re going to focus on techniques using microwave energy, which operate within the Ku, C, S and Ka frequency bands.

Altimetry is a traditional technique for measuring heights. This type of technique is termed Low Resolution Mode, as it sends out a pulse of energy that return as a wide footprint on the Earth’s surface. Therefore, care needs to be taken with variable surfaces as the energy reflected back to the sensor gives measurements from different surfaces. The signal also needs to be corrected for speed of travel through the atmosphere and small changes in the orbit of the satellite, before it can be used to calculate a height to centimetre accuracy. Satellites that use this type of methodology include Jason-2, which operates at the Ku frequency, and Saral/AltiKa operating in the Ka band. Pixalytics has been working on a technique to measure river and flood water heights using this type of satellite data. This would have a wide range of applications in both remote area monitoring, early warning systems, disaster relief, and as shown in the paper ‘Challenges for GIS remain around the uncertainty and availability of data’ by Tina Thomson, offers potential for the insurance and risk industries.

A second methodology for measuring heights using microwave data is Interferometric Synthetic Aperture Radar (InSAR), which uses phase measurements from two or more successive satellite SAR images to determine the Earth’s shape and topography. It can calculate millimetre scale changes in heights and can be used to monitor natural hazards and subsidence. InSAR is useful with relatively static surfaces, such as buildings, as the successive satellite images can be accurately compared. However, where you have dynamic surfaces, such as water, the technique is much more difficult to use as the surface will have naturally changed between images. Both ESA’s Sentinel-1 and the CryoSat-2 carry instruments where this technique can be applied.

The image at the top of the blog is an interferogram using data collected by Sentinel-1 in the aftermath of the recent earthquake in Nepal. The colours on the image reflect the movement of ground between the before, and after, image; and initial investigations from scientists indicates that Mount Everest has shrunk by 2.8 cm (1 inch) following the quake; although this needs further research to confirm the height change.

From the largest mountain to the smallest changes, satellite data can help measure heights across the world.