Silver Anniversary for Ocean Altimetry Space Mission

Artist rendering of Jason-3 satellite over the Amazon.
Image Courtesy NASA/JPL-Caltech.

August 10th 1992 marked the launch of the TOPEX/Poseidon satellite, the first major oceanographic focussed mission. Twenty five years, and three successor satellites, later the dataset begun by TOPEX/Poseidon is going strong providing sea surface height measurements.

TOPEX/Poseidon was a joint mission between NASA and France’s CNES space agency, with the aim of mapping ocean surface topography to improve our understanding of ocean currents and global climate forecasting. It measured ninety five percent of the world’s ice free oceans within each ten day revisit cycle. The satellite carried two instruments: a single-frequency Ku-band solid-state altimeter and a dual-frequency C- and Ku-band altimeter sending out pulses at 13.6 GHz and 5.3 GHz respectively. The two bands were selected due to atmospheric sensitivity, as the difference between them provides estimates of the ionospheric delay caused by the charged particles in the upper atmosphere that can delay the returned signal. The altimeter sends radio pulses towards the earth and measures the characteristics of the returned echo.

When TOPEX/Poseidon altimetry data is combined with other information from the satellite, it was able to calculate sea surface heights to an accuracy of 4.2 cm. In addition, the strength and shape of the return signal also allow the determination of wave height and wind speed. Despite TOPEX/Poseidon being planned as a three year mission, it was actually active for thirteen years, until January 2006.

The value in the sea level height measurements resulted in a succeeding mission, Jason-1, launched on December 7th 2001. It was put into a co-ordinated orbit with TOPEX/Poseidon and they both took measurements for three years, which allowed both increased data frequency and the opportunity for cross calibration of the instruments. Jason-1 carried a CNES Poseidon-2 Altimeter using the same C- and Ku-bands, and following the same methodology it had the ability to measure sea-surface height to an improved accuracy of 3.3 cm. It made observations for 12 years, and was also overlapped by its successor Jason-2.

Jason-2 was launched on the 20 June 2008. This satellite carried a CNES Poseidon-3 Altimeter with C- and Ku-bands with the intention of measuring sea height to within 2.5cm. With Jason-2, National Oceanic and Atmospheric Administration (NOAA) and the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) took over the management of the data. The satellite is still active, however due to suspected radiation damage its orbit was lowered by 27 km, enabling it to produce an improved, high-resolution estimate of Earth’s average sea surface height, which in turn will help improve the quality of maps of the ocean floor.

Following the established pattern, Jason-3 was launched on the 17th January 2016. It’s carrying a Poseidon-3B radar altimeter, again using the same C and Ku bands and on a ten day revisit cycle.

Together these missions have provided a 25 year dataset on sea surface height, which has been used for applications such as:

  • El Niño and La Niña forecasting
  • Extreme weather forecasting for hurricanes, floods and droughts
  • Ocean circulation modelling for seasons and how this affects climate through by moving heat around the globe
  • Tidal forecasting and showing how this energy plays an important role in mixing water within the oceans
  • Measurement of inland water levels – at Pixalytics we have a product that we have used to measure river levels in the Congo and is part of the work we are doing on our International Partnership Programme work in Uganda.

In the future, the dataset will be taken forward by the Jason Continuity of Service (Jason-CS) on the Sentinel-6 ocean mission which is expected to be launched in 2020.

Overall, altimetry data from this series of missions is a fantastic resource for operational oceanography and inland water applications, and we look forward to its next twenty five years!

Landsat Turns 45!

False colour image of Dallas, Texas. The first fully operational Landsat image taken on July 25, 1972, Image courtesy: NASA’s Earth Observatory

Landsat has celebrated forty-five years of Earth observation this week. The first Landsat mission was Earth Resources Technology Satellite 1 (ERTS-1), which was launched into a sun-synchronous near polar orbit on the 23 July 1972. It wasn’t renamed Landsat-1 until 1975. It had an anticipated life of 1 year and carried two instruments: the Multi Spectral Scanner (MSS) and the Return-Beam Vidicon (RBV).

The Landsat missions have data continuity at their heart, which has given a forty-five year archive of Earth observation imagery. However, as technological capabilities have developed the instruments on consecutive missions have improved. To demonstrate and celebrate this, NASA has produced a great video showing the changing coastal wetlands in Atchafalaya Bay, Louisiana, through the eyes of the different Landsat missions.

In total there have been eight further Landsat missions, but Landsat 6 failed to reach its designated orbit and never collected any data. The missions have been:

  • Landsat 1 launched on 23 July 1972.
  • Landsat 2 launched on 22 January 1975.
  • Landsat 3 was launched on 5 March 1978.
  • Landsat 4 launched on 16 July 1982.
  • Landsat 5 launched on 1 March 1984.
  • Landsat 7 launched on 15 April 1999, and is still active.
  • Landsat 8 launched on 11 February 2013, and is still active.

Landsat 9 is planned to be launched at the end 2020 and Landsat 10 is already being discussed.

Some of the key successes of the Landsat mission include:

  • Over 7 million scenes of the Earth’s surface.
  • Over 22 million scenes had been downloaded through the USGS-EROS website since 2008, when the data was made free-to-access, with the rate continuing to increase (Campbell 2015).
  • Economic value of just one year of Landsat data far exceeds the multi-year total cost of building, launching, and managing Landsat satellites and sensors.
  • Landsat 5 officially set a new Guinness World Records title for the ‘Longest-operating Earth observation satellite’ with its 28 years and 10 months of operation when it was decommissioned in December 2012.
  • ESA provides Landsat data downlinked via their own data receiving stations; the ESA dataset includes data collected over the open ocean, whereas USGS does not, and the data is processed using ESA’s own processor.

The journey hasn’t always been smooth. Although established by NASA, Landsat was transferred to the private sector under the management of NOAA in the early 1980’s, before returning to US Government control in 1992. There have also been technical issues, the failure of Landsat 6 described above; and Landsat 7 suffering a Scan Line Corrector failure on the 31st May 2003 which means that instead of mapping in straight lines, a zigzag ground track is followed. This causes parts of the edge of the image not to be mapped, giving a black stripe effect within these images; although the centre of the images is unaffected the data overall can still be used.

Landsat was certainly a game changer in the remote sensing and Earth observation industries, both in terms of the data continuity approach and the decision to make the data free to access. It has provided an unrivalled archive of the changing planet which has been invaluable to scientists, researchers, book-writers and businesses like Pixalytics.

We salute Landsat and wish it many more years!

If no-one is there when an iceberg is born, does anyone see it?

Larsen C ice Shelf including A68 iceberg. Image acquired by MODIS Aqua satellite on 12th July 2017. Image courtesy of NASA.

The titular paraphrasing of the famous falling tree in the forest riddle was well and truly answered this week, and shows just how far satellite remote sensing has come in recent years.

Last week sometime between Monday 10th July and Wednesday 12th July 2017, a huge iceberg was created by splitting off the Larsen C Ice Shelf in Antarctica. It is one of the biggest icebergs every recorded according to scientists from Project MIDAS, a UK-based Antarctic research project, who estimate its area of be 5,800 sq km and to have a weight of more a trillion tonnes. It has reduced the Larsen C ice Shelf by more than twelve percent.

The iceberg has been named A68, which is a pretty boring name for such a huge iceberg. However, icebergs are named by the US National Ice Centre and the letter comes from where the iceberg was originally sited – in this case the A represents area zero degrees to ninety degrees west covering the Bellingshausen and Weddell Seas. The number is simply the order that they are discovered, which I assume means there have been 67 previous icebergs!

After satisfying my curiosity on the iceberg names, the other element that caught our interest was the host of Earth observation satellites that captured images of either the creation, or the newly birthed, iceberg. The ones we’ve spotted so far, although there may be others, are:

  • ESA’s Sentinel-1 has been monitoring the area for the last year as an iceberg splitting from Larsen C was expected. Sentinel-1’s SAR imagery has been crucial to this monitoring as the winter clouds and polar darkness would have made optical imagery difficult to regularly collect.
  • Whilst Sentinel-1 was monitoring the area, it was actually NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) instrument onboard the Aqua satellite which confirmed the ‘birth’ on the 12th July with a false colour image at 1 km spatial resolution using band 31 which measures infrared signals. This image is at the top of the blog and the dark blue shows where the surface is warmest and lighter blue indicates a cooler surface. The new iceberg can be seen in the centre of the image.
  • Longwave infrared imagery was also captured by the NOAA/NASA Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite on July 13th.
  • Similarly, NASA also reported that Landsat 8 captured a false-colour image from its Thermal Infrared Sensor on the 12th July showing the relative warmth or coolness of the Larsen C ice shelf – with the area around the new iceberg being the warmest giving an indication of the energy involved in its creation.
  • Finally, Sentinel-3A has also got in on the thermal infrared measurement using the bands of its Sea and Land Surface Temperature Radiometer (SLSTR).
  • ESA’s Cryosat has been used to calculate the size of iceberg by using its Synthetic Aperture Interferometric Radar Altimeter (SIRAL) which measured height of the iceberg out of the water. Using this data, it has been estimated that the iceberg contains around 1.155 cubic km of ice.
  • The only optical imagery we’ve seen so far is from the DEMIOS1 satellite which is owned by Deimos Imaging, an UrtheCast company. This is from the 14th July and revealed that the giant iceberg was already breaking up into smaller pieces.

It’s clear this is a huge iceberg, so huge in fact that most news agencies don’t think that readers can comprehend its vastness, and to help they give a comparison. Some of the ones I came across to explain its vastness were:

  • Size of the US State of Delaware
  • Twice the size of Luxembourg
  • Four times the size of greater London
  • Quarter of the size of Wales – UK people will know that Wales is almost an unofficial unit of size measurement in this country!
  • Has the volume of Lake Michigan
  • Has the twice the volume of Lake Erie
  • Has the volume of the 463 million Olympic-sized swimming pools; and
  • My favourite compares its size to the A68 road in the UK, which runs from Darlington to Edinburgh.

This event shows how satellites are monitoring the planet, and the different ways we can see the world changing.

Locusts & Monkeys

Soil moisture data from the SMOS satellite and the MODIS instrument acquired between July and October 2016 were used by isardSAT and CIRAD to create this map showing areas with favourable locust swarming conditions (in red) during the November 2016 outbreak. Data courtesy of ESA. Copyright : CIRAD, SMELLS consortium.

Spatial resolution is a key characteristic in remote sensing, as we’ve previously discussed. Often the view is that you need an object to be significantly larger than the resolution to be able to see it on an image. However, this is not always the case as often satellites can identify indicators of objects that are much smaller.

We’ve previously written about satellites identifying phytoplankton in algal blooms, and recently two interesting reports have described how satellites are being used to determine the presence of locusts and monkeys!

Locusts

Desert locusts are a type of grasshopper, and whilst individually they are harmless as a swarm they can cause huge damage to populations in their paths. Between 2003 and 2005 a swarm in West Africa affected eight million people, with reported losses of 100% for cereals, 90% for legumes and 85% for pasture.

Swarms occur when certain conditions are present; namely a drought, followed by rain and vegetation growth. ESA and the UN Food and Agriculture Organization (FAO) have being working together to determine if data from the Soil Moisture and Ocean Salinity (SMOS) satellite can be used to forecast these conditions. SMOS carries a Microwave Imaging Radiometer with Aperture Synthesis (MIRAS) instrument – a 2D interferometric L-band radiometer with 69 antenna receivers distributed on a Y-shaped deployable antenna array. It observes the ‘brightness temperature’ of the Earth, which indicates the radiation emitted from planet’s surface. It has a temporal resolution of three days and a spatial resolution of around 50 km.

By combining the SMOS soil moisture observations with data from NASA’s MODIS instrument, the team were able to downscale SMOS to 1km spatial resolution and then use this data to create maps. This approach then predicted favourable locust swarming conditions approximately 70 days ahead of the November 2016 outbreak in Mauritania, giving the potential for an early warning system.

This is interesting for us as we’re currently using soil moisture data in a project to provide an early warning system for droughts and floods.

Monkeys

Earlier this month the paper, ‘Connecting Earth Observation to High-Throughput Biodiversity Data’, was published in the journal Nature Ecology and Evolution. It describes the work of scientists from the Universities of Leicester and East Anglia who have used satellite data to help identify monkey populations that have declined through hunting.

The team have used a variety of technologies and techniques to pull together indicators of monkey distribution, including:

  • Earth observation data to map roads and human settlements.
  • Automated recordings of animal sounds to determine what species are in the area.
  • Mosquitos have been caught and analysed to determine what they have been feeding on.

Combining these various datasets provides a huge amount of information, and can be used to identify areas where monkey populations are vulnerable.

These projects demonstrate an interesting capability of satellites, which is not always recognised and understood. By using satellites to monitor certain aspects of the planet, the data can be used to infer things happening on a much smaller scale than individual pixels.

Monitoring Fires From Space

Monitoring fires from space has significant advantages when compared to on-ground activity. Not only are wider areas easier to monitor, but there are obvious safety benefits too. The different ways this can be done have been highlighted through a number of reports over the last few weeks.

VIIRS Image from 25 April 2017, of the Yucatán Peninsula showing where thermal bands have picked-up increased temperatures. Data Courtesy of NASA, NASA image by Jeff Schmaltz, LANCE/EOSDIS Rapid Response.

Firstly, NASA have released images from different instruments, on different satellites, that illustrate two ways of how satellites can monitor fires.

Acquired on the 25 April 2017, an image from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite showed widespread fire activity across the Yucatán Peninsula in South America. The image to the right is a natural colour image and each of the red dots represents a point where the instrument’s thermal band detected temperatures higher than normal.

False colour image of the West Mims fire on Florida/Georgia boundary acquired by MODIS on 02 May 2017. Data courtesy of NASA. NASA image by Jeff Schmaltz, LANCE/EOSDIS Rapid Response.

Compare this to a wildfire on Florida-Georgia border acquired from NASA’s Aqua satellite on the 02 May 2017 using the Moderate Resolution Imaging Spectroradiometer (MODIS). On the natural colour image the fires could only be seen as smoke plumes, but on the left is the false colour image which combines infrared, near-infrared and green wavelengths. The burnt areas can be clearly seen in brown, whilst the fire itself is shown as orange.

This week it was reported that the Punjab Remote Sensing Centre in India, has been combining remote sensing, geographical information systems and Global Positioning System (GPS) data to identify the burning of crop stubble in fields; it appears that the MODIS fire products are part of contributing the satellite data. During April, 788 illegal field fires were identified through this technique and with the GPS data the authorities have been able to identify, and fine, 226 farmers for undertaking this practice.

Imaged by Sentinel-2, burnt areas, shown in shades of red and purple, in the Marantaceae forests in the north of the Republic of Congo.
Data courtesy of Copernicus/ESA. Contains modified Copernicus Sentinel data (2016), processed by ESA.

Finally, a report at the end of April from the European Space Agency described how images from Sentinel-1 and Senintel-2 have been combined to assess the amount of forest that was burnt last year in the Republic of Congo in Africa – the majority of which was in Marantaceae forests. As this area has frequent cloud cover, the optical images from Sentinel-2 were combined with the Synthetic Aperture Radar (SAR) images from Sentinel-1 that are unaffected by the weather to offer an enhanced solution.

Sentinel-1 and Sentinel-2 data detect and monitor forest fires at a finer temporal and spatial resolution than previously possible, namely 10 days and 10 m, although the temporal resolution will increase to 5 days later this year when Sentinel-2B becomes fully operational.  Through this work, it was estimated that 36 000 hectares of forest were burnt in 2016.

Given the danger presented by forest fires and wildfires, greater monitoring from space should improve fire identification and emergency responses which should potentially help save lives. This is another example of the societal benefit of satellite remote sensing.

Supporting Chimpanzee Conservation from Space

Gombe National Park, Tanzania. Acquired by Sentinel-2 in December 2016. Image courtesy of ESA.

Being able to visualise the changing face of the planet over time is one of the greatest strengths of satellite remote sensing. Our previous blog showed how Dubai’s coastline has evolved over a decade, and last week NASA described interesting work they’re doing on monitoring habitat loss for chimpanzees in conjunction with the Jane Goodall Institute.

Jane Goodall has spent over fifty years working to protect and conserve chimpanzees from the Gombe National Park in Tanzania, and formed the Jane Goodall Institute in 1977. The Institute works with local communities to provide sustainable conservation programmes.

A hundred years ago more than one million chimpanzees lived in Africa, today the World Wildlife Fund estimate the population may only be around 150,000 to 250,000. The decline is stark. For example, the Ivory Coast populations have declined by 90% within the last twenty years.

One of the key factors contributing to this decline is habitat loss, mostly through deforestation; although other factors such as hunting, disease and illegal capture also contributed.

Forests cover around 31% of the planet, and deforestation occurs when trees are removed and the land has another use instead of being a forest. In chimpanzee habitats, the deforestation is mostly due to logging, mining and drilling for oil. This change in land use can be monitored from space using remote sensing. Satellites produce regular images which can be used to monitor changes in the natural environment, in turn giving valuable information to conservation charities and other organisations.

In 2000 Lilian Pintea, from the Jane Goodall Institute, was shown Landsat images comparing the area around the Gombe National Park in 1972 and 1999. The latter image showed huge deforestation outside the park’s boundary. The Institute have continued to use Landsat imagery to monitor what is happening around the National Park. In 2009 they began a citizen science project with local communities giving them smartphones to report their observations. Combining these with ongoing satellite data from NASA has helped develop and implement local plans for land use and protection of the forests. Further visualisation of this work can be found here. The image at the top was acquired Sentinel-2 in December 2016 and shows the Gombe National Park, although it is under a little haze.

The satellite data supplied by NASA comes from the Landsat missions, which currently have an archive of almost forty-five years of satellite data, which is freely available to anyone. We also used Landsat for data in our Dubai animation last week. Landsat captures optical data, which means it operates in a similar manner to the human eye – although the instruments also have infrared capabilities. However, one drawback of optical instruments is that they cannot see through clouds. Therefore, whilst Landsat is great for monitoring land use when there are clear skies, it can be combined with synthetic aperture radar (SAR), from the microwave spectrum, as it can see through both clouds and smoke. This combination enables land use and land change to monitored anywhere in the world. Using the freely available Landsat and Sentinel-1 SAR data you could monitor what is happening to the forests in your neighbourhoods.

Satellite data is powerful tool for monitoring changes in the environment, and with the archive of data available offers a unique opportunity to see what has happened over the last four decades.

Goodbye to EO-1

Hyperspectral data of fields in South America classified using Principle Components Analysis. Data acquired by Hyperion. Image courtesy of NASA.

In contrast to our previous blog, this week’s is a celebration of the Earth Observing-1 (EO-1) satellite whose death will soon be upon us.

EO-1 was launched on the 21st November 2000 from Vandenberg Air Force Base, California. It has a polar sun-synchronous orbit at a height of 705 km, following the same orbital track as Landsat-7, but lagging one minute behind. It was put into this orbit to allow for a comparison with Landsat 7 images in addition to the evaluation of EO-1’s instruments.

It was the first in NASA’s New Millennium Program Earth Observing series, which had the aim of developing and testing advanced technology and land imaging instruments, particularly related to spatial, spectral and temporal characteristics not previously available.

EO-1 carries three main instruments:

  • Hyperion is an imaging spectrometer which collects data in 220 visible and infrared bands at 30 m spatial resolution with a 7.5 km x 100 km swath. Hyperion has offered a range of benefits to applications such as mining, geology, forestry, agriculture, and environmental management.
  • Advanced Land Imaging (ALI) is a multispectral imager capturing 9 bands at 30 m resolution, plus a panchromatic band at 10 m, with a swath width of 37 km. It has the same seven spectral bands as Landsat 7, although it collects data via a different method. ALI uses a pushbroom technique where the sensor acts like a broom head and collects data along a strip as if a broom was being pushed along the ground. Whereas Landsat operates a whiskbroom approach which involves several linear detectors (i.e., broom heads) perpendicular (at a right angle) to the direction of data collection. These detectors are stationary in the sensor and a mirror underneath sweeps the pixels from left to right reflecting the energy from the Earth into the detectors to collect the data.
  • Atmospheric Corrector (LAC) instrument allows the correction of imagery for atmospheric variability, primarily water vapour, by measuring the actual rate of atmospheric absorption, rather than using estimates.

The original EO-1 mission was only due to be in orbit only one year, but with a sixteen year lifetime it has surpassed all expectations. The extension of the one year mission was driven by the Earth observation user community who were very keen to continue with the data collection, and an agreement was reached with NASA to continue.

Psuedo-true colour hyperspectral data of fields in South America. Data acquired by Hyperion. Image courtesy of NASA.

All the data collect by both Hyperion and ALI is freely available through the USGS Centre for Earth Resources Observation and Science (EROS). At Pixalytics we’ve used Hyperion data for understanding the capabilities of hyperspectral data. The two images shown in the blog are a subset of a scene acquired over fields in South America, with image to the right is a pseudo-true colour composite stretched to show the in-field variability.

Whereas the image at the top is the hyperspectral data classified using a statistical procedure, called Principle Components Analysis (PCA), which extracts patterns from within the dataset. The first three derived uncorrelated variables, termed principle components, are shown as a colour composite.

Sadly, satellites cannot go on forever, and EO-1 is in its final few weeks of life. It stopped accepting data acquisition requests on the 6th January 2017, and will stop providing data by the end of February.

It has been a great satellite, and will be sadly missed.

Earth Observation Looking Good in 2017!

Artist's rendition of a satellite - paulfleet/123RF Stock Photo

Artist’s rendition of a satellite – paulfleet/123RF Stock Photo

2017 is looking like an exciting one for Earth Observation (EO), judging by the number of significant satellites planned for launch this year.

We thought it would be interesting to give an overview of some of the key EO launches we’ve got to look forward to in the next twelve months.

The European Space Agency (ESA) has planned launches of:

  • Sentinel-2B in March, Sentinel-5p in June and Sentinel-3B in August – all of which we discussed last week.
  • ADM-Aeolus satellite is intended to be launched by the end of the year carrying an Atmospheric Laser Doppler Instrument. This is essentially a lidar instrument which will provide global measurements of wind profiles from ground up to the stratosphere with 0.5 to 2 km vertical resolution.

From the US, both NASA and NOAA have important satellite launches:

  • NASA’s Ionospheric Connection Explorer (ICON) Mission is planned for June, and will provide observations of Earth’s ionosphere and thermosphere; exploring the boundary between Earth and space.
  • NASA’s ICESat-2 in November that will measure ice sheet elevation, ice sheet thickness changes and the Earth’s vegetation biomass.
  • In June NOAA will be launching the first of its Joint Polar Satellite System (JPSS) missions, a series of next-generation polar-orbiting weather observatories.
  • Gravity Recovery And Climate Experiment – Follow-On (GRACE_FO) are a pair of twin satellites to extend measurements from the GRACE satellite, maintaining data continuity. These satellites use microwaves to measure the changes in the Earth’s gravity fields to help map changes in the oceans, ice sheets and land masses. It is planned for launch right at the end of 2017, and is a partnership between NASA and the German Research Centre for Geosciences.

Some of the other launches planned include:

  • Kanopus-V-IK is a small Russian remote sensing satellite with an infrared capability to be used for forest fire detection. It has a 5 m by 5 m spatial resolution over a 2000 km swath, and is planned to be launched next month.
  • Vegetation and Environment monitoring on a New MicroSatellite (VENµS), which is partnership between France and Israel has a planned launch of August. As its name suggests it will be monitoring ecosytems, global carbon cycles, land use and land change.
  • KhalifaSat is the third EO satellite of United Arab Emirates Institution for Advanced Science and Technology (EIAST). It is an optical satellite with a spatial resolution of 0.75 m for the visible and near infrared bands.

Finally, one of the most intriguing launches involves three satellites that form the next part of India’s CartoSat mission. These satellites will carry both high resolution multi- spectral imagers and a panchromatic camera, and the mission’s focus is cartography. It’s not these three satellites that make this launch intriguing, it is the one hundred other satellites that will accompany them!

The Indian Space Research Organisation’s Polar Satellite Launch Vehicle, PSLV-C37, will aim to launch a record 103 satellites in one go. Given that the current record for satellites launched in one go is 37, and that over the last few years we’ve only had around two hundred and twenty satellites launched in an entire year; this will be a hugely significant achievement.

So there you go. Not a fully comprehensive list, as I know there will be others, but hopefully it gives you a flavour of what to expect.

It certainly shows that the EO is not slowing down, and the amount of data available is continuing to grow. This of course gives everyone working in the industry more challenges in terms of storage and processing power – but they are good problems to have. Exciting year ahead!

Will Earth Observation’s power base shift in 2017?

Blue Marble image of the Earth taken by the crew of Apollo 17 on Dec. 7 1972. Image Credit: NASA

Blue Marble image of the Earth taken by the crew of Apollo 17 on Dec. 7 1972.
Image Credit: NASA

We’re only a few days into 2017, but this year may see the start of a seismic shift in the Earth Observation (EO) power base.

We’ve previously described how the sustainable EO industry really began this week thirty nine years ago. On 6th January 1978 NASA deactivated Landsat-1; it had already launched Landsat-2, carrying the same sensors, three years earlier and with guaranteed data continuity our industry effectively began.

Since then the USA, though the data collected by NASA and NOAA satellites, has led the EO global community. This position was cemented in 2008 when it made all Landsat data held by the United States Geological Survey (USGS) freely available, via the internet, to anyone in the world. This gave scientists three decades worth of data to start investigating how the planet had changed, and companies sprang up offering services based entirely on Landsat data. This model of making data freely available has been so transformational, that the European Union decided to follow it with its Copernicus Programme.

Landsat-1 and 2 were followed by 4, 5, 7 & 8 – sadly Landsat 6 never made its orbit – and Landsat 9 is planned for launch in 2020. The USA’s role EO leadership has never been in question, until now.

US President-elect Donald Trump and his team have already made a number of statements indicating that they intended to cut back on NASA’s Earth Science activities. There are a variety of rumours suggesting reasons for this change of approach. However, irrespective of the reason, slashing the current $2 billion Earth Science budget will have huge consequences. Whilst all of this is just conjecture at the moment, the reality will be seen after 20th January.

Against this America backdrop sits the Copernicus Programme, with the European Space Agency due to launch another three satellites this year:

  • Sentinel 2B is planned for March. This is the second of the twin constellation optical satellites offering a spatial resolution of 10 m for the visible bands. The constellation will revisit the same spot over the equator every five days, with a shorter temporal resolution for higher latitudes.
  • June is the scheduled month for the launch of the Sentinel 5 Precursor EO satellite to measure air quality, ozone, pollution and aerosols in the Earth’s atmosphere. This will be used to reduce the data gaps between Envisat, which ended in 2012, and the launch of Sentinel-5.
  • Sentinel 3B is due to launched in the middle of the year, and like 2B is the second in a twin satellite constellation. This pair is mainly focussed on the oceans and measure sea surface topography, sea and land surface temperature, and ocean and land colour. It will provide global coverage every two days with Sea and Land Surface Temperature Radiometer (SLSTR) and the Ocean and Land Colour Instrument (OLCI).

These launches will take give the Copernicus programme seven satellites collecting a wide variety of optical and radar data across the entire planet, which is then made freely available to anyone. It’s obvious to see what will fill any vacuum created by a reduction in Earth Science in the USA.

Depending on how much of the next US President’s rhetoric is turned into action, we may start to see the shift of the EO power base to Europe. Certainly going to be an interesting year ahead!

Small Satellites Step Forward

Artist's concept of one of the eight Cyclone Global Navigation Satellite System satellites deployed in space above a hurricane. Image courtesy of NASA.

Artist’s concept of one of the eight Cyclone Global Navigation Satellite System satellites deployed in space above a hurricane. Image courtesy of NASA.

We’re all about small satellites with this blog, after looking at the big beast that is GOES-R last week. Small satellites, microsatellites, cubesats or one of the other myriad of names they’re described as, have been in the news this month.

Before looking at what’s happening, we’re going to start with some definitions. Despite multiple terms being used interchangeably, they are different and are defined based around either their cubic size or their wet mass – ‘wet mass’ refers to the weight of the satellite including fuel, whereas dry mass is just the weight of satellite:

  • Small satellites (smallsats), also known as minisats, have a wet mass of between 100 and 500 kg.
  • Microsats generally have a wet mass of between 10 and 100 kg.
  • Nanosats have a wet mass of between 1 and 10 kg.
  • Cubesats are a class of nanosats that have a standard size. One Cubesat measures 10x10x10 cm, known as 1U, and has a wet mass of no more than 1.33 kg. However, it is possible to join multiple cubes together to form a larger single unit.
  • Picosats have a wet mass of between 0.1 and 1 kg
  • Femtosats have a wet mass of between 10 and 100 g

To give a comparison, GOES-R had a wet mass of 5 192 kg, a dry mass of 2 857 kg, and a size of 6.1 m x 5.6 m x 3.9 m.

Small satellites have made headlines for a number of reasons, and the first two came out of a NASA press briefing given by Michael Freilich, Director of NASA’s Earth science division on the 7th November. NASA is due to launch the Cyclone Global Navigation Satellite System (CYGNSS) on 12th December from Cape Canaveral. CYGNSS will be NASA’s first Earth Observation (EO) small satellite constellation. The mission will measure wind speeds over the oceans, which will be used to improve understanding, and forecasting, of hurricanes and storm surges.

The constellation will consist of eight small satellites in low Earth orbits, which will be focussed over the tropics rather than the whole planet. Successive satellites in the constellation will pass over the same area every twelve minutes, enabling an image of wind speed over the entire tropics every few hours.

Each satellite will carry a Delay Doppler Mapping Instrument (DDMI) which will receive signals from existing GPS satellites and the reflection of that same signal from the Earth. The scattered signal from the Earth will measure ocean roughness, from which wind speed can be derived. Each microsatellite will weigh around 29 kg and measure approximately 51 x 64 x 28 cm; on top of this will be solar panels with a span of 1.67 m.

The second interesting announcement as reported by Space News, was that NASA is planning to purchase EO data from other small satellite constellation providers, to assess the quality and usability of that data. They will be one-off purchases with no ongoing commitment, and will sit alongside data from existing NASA missions. However, it is difficult not to assume that a successful and cost effective trial could lead to ongoing purchases, which could replace future NASA missions.

It’s forecast that this initiative could be worth in the region of $25 million, and will surely interest the existing suppliers such as Planet or TerraBella; however, in the longer term it could also attract new players to the market.

Finally in non NASA small satellite news, there was joint announcement at the start of the month by the BRICS states (Brazil, Russia, India, China and South Africa) that they’d agreed to create a joint satellite constellation for EO. No further detail is available at this stage.

Once again, this shows what a vibrant, changing and evolving industry we work in!