Differences Between Optical & Radar Satellite Data

Ankgor Wat, Cambodia. Sentinel-2A image courtesy of ESA.

Ankgor Wat, Cambodia. Sentinel-2A image courtesy of ESA.

The two main types of satellite data are optical and radar used in remote sensing. We’re going to take a closer look at each type using the Ankgor Wat site in Cambodia, which was the location of the competition we ran on last week’s blog as part of World Space Week. We had lots of entries, and thanks to everyone who took part!

Constructed in the 12th Century, Ankgor Wat is a temple complex and the largest religious monument in the world. It lies 5.5 kilometres north of the modern town of Siem Reap and is popular with the remote sensing community due to its distinctive features. The site is surrounded by a 190m-wide moat, forming a 1.5km by 1.3km border around the temples and forested areas.

Optical Image
The picture at the top, which was used for the competition, is an optical image taken by a Multi-Spectral Imager (MSI) carried aboard ESA’s Sentinel-2A satellite. Optical data includes the visible wavebands and therefore can produce images, like this one, which is similar to how the human eye sees the world.

The green square in the centre of the image is the moat surrounding the temple complex; on the east side is Ta Kou Entrance, and the west side is the sandstone causeway which leads to the Angkor Wat gateway. The temples can be clearly seen in the centre of the moat, together with some of the paths through the forest within the complex.

To the south-east are the outskirts of Siem Reap, and the square moat of Angkor Thom can be seen just above the site. To the right are large forested areas and to the left are a variety of fields.
In addition to the three visible bands at 10 m resolution, Sentinel-2A also has:

  • A near-infrared band at 10 m resolution,
  • Six shortwave-infrared bands at 20 m resolution, and
  • Three atmospheric correction bands at 60 m resolution.

Radar Image
As a comparison we’ve produced this image from the twin Sentinel-1 satellites using the C-Band Synthetic Aperture Radar (SAR) instrument they carry aboard. This has a spatial resolution of 20 m, and so we’ve not zoomed as much as with the optical data; in addition, radar data is noisy which can be distracting.

Angkor Wat, Cambodia. SAR image from Sentinel-1 courtesy of ESA.

Angkor Wat, Cambodia. SAR image from Sentinel-1 courtesy of ESA.

The biggest advantage of radar data over optical data is that it is not affected by weather conditions and can see through clouds, and to some degree vegetation. This coloured Sentinel-1 SAR image is produced by showing the two polarisations (VV and VH i.e. vertical polarisation send for the radar signal and vertical or horizontal receive) alongside a ratio of them as red, green and blue.

Angkor Wat is shown just below centre, with its wide moat, and other archaeological structures surrounding it to the west, north and east. The variety of different landscape features around Angkor Wat show up more clearly in this image. The light pink to the south is the Cambodian city of Siem Reap with roads appearing as lines and an airport visible below the West Baray reservoir, which also dates from the Khmer civilization. The flatter ground that includes fields are purple, and the land with significant tree cover is shown as pale green.

Conclusion
The different types of satellite data have different uses, and different drawbacks. Optical imagery is great if you want to see the world as the human eye does, but radar imagery offers better options when the site can be cloudy and where you want an emphasis on the roughness of the surfaces.

How to Measure Heights From Space?

Combining two Sentinel-1A radar scans from 17 and 29 April 2015, this interferogram shows changes on the ground that occurred during the 25 April earthquake that struck Nepal. Contains Copernicus data (2015)/ESA/Norut/PPO.labs/COMET–ESA SEOM INSARAP study

Combining two Sentinel-1A radar scans from 17 and 29 April 2015, this interferogram shows changes on the ground that occurred during the 25 April earthquake that struck Nepal. Contains Copernicus data (2015)/ESA/Norut/PPO.labs/COMET–ESA SEOM INSARAP study

Accurately measuring the height of buildings, mountains or water bodies is possible from space. Active satellite sensors send out pulses of energy towards the Earth, and measure the strength and origin of the energy received back enabling them to determine of the heights of objects struck by the pulse energy on Earth.

This measurement of the time it takes an energy pulse to return to the sensor, can be used for both optical and microwave data. Optical techniques such as Lidar send out a laser pulse; however within this blog we’re going to focus on techniques using microwave energy, which operate within the Ku, C, S and Ka frequency bands.

Altimetry is a traditional technique for measuring heights. This type of technique is termed Low Resolution Mode, as it sends out a pulse of energy that return as a wide footprint on the Earth’s surface. Therefore, care needs to be taken with variable surfaces as the energy reflected back to the sensor gives measurements from different surfaces. The signal also needs to be corrected for speed of travel through the atmosphere and small changes in the orbit of the satellite, before it can be used to calculate a height to centimetre accuracy. Satellites that use this type of methodology include Jason-2, which operates at the Ku frequency, and Saral/AltiKa operating in the Ka band. Pixalytics has been working on a technique to measure river and flood water heights using this type of satellite data. This would have a wide range of applications in both remote area monitoring, early warning systems, disaster relief, and as shown in the paper ‘Challenges for GIS remain around the uncertainty and availability of data’ by Tina Thomson, offers potential for the insurance and risk industries.

A second methodology for measuring heights using microwave data is Interferometric Synthetic Aperture Radar (InSAR), which uses phase measurements from two or more successive satellite SAR images to determine the Earth’s shape and topography. It can calculate millimetre scale changes in heights and can be used to monitor natural hazards and subsidence. InSAR is useful with relatively static surfaces, such as buildings, as the successive satellite images can be accurately compared. However, where you have dynamic surfaces, such as water, the technique is much more difficult to use as the surface will have naturally changed between images. Both ESA’s Sentinel-1 and the CryoSat-2 carry instruments where this technique can be applied.

The image at the top of the blog is an interferogram using data collected by Sentinel-1 in the aftermath of the recent earthquake in Nepal. The colours on the image reflect the movement of ground between the before, and after, image; and initial investigations from scientists indicates that Mount Everest has shrunk by 2.8 cm (1 inch) following the quake; although this needs further research to confirm the height change.

From the largest mountain to the smallest changes, satellite data can help measure heights across the world.