Perspectives from the 12th Appleton Space Conference

Sam presenting at the 2016 Appleton Space Conference. Image courtesy of Deimos UK.

Sam presenting at the 2016 Appleton Space Conference. Image courtesy of Deimos UK.

Last week I attended the 12th Appleton Space Conference, it was the first time I’d been to one of these conferences, and I was excited to be giving a talk. It was hosted by RAL Space at the Harwell Campus.

After the welcome, the day started with a talk from Ross James (Deputy CEO at the UK Space Agency). He’s new to the space community, and so has enjoyed learning to understand it more fully. It was interesting to hear him reinforce the conclusion that the space industry’s value-added multiplier is two, but also that the industry needs to be more regionally and user focused.

Talks then followed by members of European Centre for Space Applications and Telecommunications (ECSAT, the UK’s ESA centre) and the Harwell Campus. I was surprised hear the comparison that the Harwell Campus site is roughly equivalent to the size of the City of London. Whilst Harwell doesn’t yet have any of the iconic tall buildings of the City, it does mean it has plenty of space to grow – with plans to increase the campus to 5 500 jobs by 2020; although it was acknowledged that an upgrade of the underpinning infrastructure would be needed to support this.

Sam presenting at the 2016 Appleton Space Conference. Image courtesy of Sara Huntingdon, Space for Smarter Government Programme.

Sam presenting at the 2016 Appleton Space Conference. Image courtesy of Sara Huntingdon, Space for Smarter Government Programme.

After the break we swapped to the topics of growth and innovation. The Autumn Statement had a strong focus on creating an environment for backing winners, with Innovation UK targeted on turning scientific excellence into economic input and scaling up high potential businesses. Two quotes from Tim Just (Innovate UK) that particularly resonated with me:

  • Research is the transformation of money into knowledge; and
  • Innovation transforms it back again.

There was also a debate on whether the space industry is reaching the threshold for a tipping point as outlined in Malcolm Gladwell’s criteria – i.e., where a slow moving trend reaches critical mass and causes a larger change such as the use of space applications and technologies becoming the everyday norm. The last two talks before lunch were on the development of new instruments – including the recently launched Sentinel-3 mission.

The first afternoon session was on understanding scientific advances. We started off by discussing exoplanets (a planet which orbits a star outside the solar system), followed by detecting signals using ground based radars and then understanding gravitational waves. My own talk on harnessing the increasing volumes of Earth Observation (EO) data came at the end of this session. I focused on discussing how there has been a massive change in the amount of available EO data with the need to bring the abilities of computers and humans together to best use this wealth of information.

The slides from my presentation can be found here. It was interesting to see some of the messages people took away from my talk on Twitter such as:

  • The availability of free satellite data is revolutionising remote sensing
  • We have to make the most out of the large quantity of data made available by Earth Observation

After lots of people coming to talk to me during coffee it was great to see Paul Jerram from e2V showing what EO sensors look like, ranging from much larger version of the snapshot imagers found in smart phones to time delay imagers that collect the signal over a period of time so we can have very high resolution imagery. For example, the planet Mars is being imaged at 30 cm resolution. Prof Martin Wooster (Kings College London) focused on biomass burning emissions. Research has shown that the Malaysian fires in 2015, linked to El Nino, contributed to 15% of the global carbon dioxide increases that year but also to thousands of deaths due to the air pollution they caused.

Our day of talks concluded with a keynote lecture by Tim Peake, giving a personal insight into his mission into Space onboard the International Space Station (ISS). As an afternoon speaker I had a front row seat, and so I’m easily spotted on Tim’s room selfie! It was interesting to hear that Tim found adjusting to gravity back on Earth more difficult than weightlessness in space. How much he enjoyed his time on the ISS was obvious when he said he’d be happy to go again as the journey into space was particularly exhilarating.

Whilst aboard the ISS Tim used his limited amount of spare time on Sundays to take photographs of the Earth. Anyone who followed Tim on Twitter will have seen some of these, but he has also now brought out a book of these pictures titled ‘Hello, is this planet Earth? My View from the International Space Station’. An interesting footnote, although not from the conference, is that the UK has just purchased the capsule Tim used to get to, and from, space and it will go on display in the Science Museum next year.

Overall, it was a fantastic day jam packed with interesting, exciting and inspiring discussions about space!

Flooding Forecasting & Mapping

Sentinel-1 data for York overlaid in red with Pixalytics flood mapping layer based on Giustarini approach for the December 2015 flooding event. Data courtesy of ESA.

Sentinel-1 data for York overlaid in red with Pixalytics flood mapping layer based on Giustarini approach for the December 2015 flooding event. Data courtesy of ESA.

Media headlines this week have shouted that the UK is in for a sizzling summer with temperature in the nineties, coupled with potential flooding in August due to the La Niña weather process.

The headlines were based on the UK Met Office’s three month outlook for contingency planners. Unfortunately, when we looked at the information ourselves it didn’t exactly say what the media headlines claimed! The hot temperatures were just one of a number of potential scenarios for the summer. As any meteorologist will tell you, forecasting a few days ahead is difficult, forecasting a three months ahead is highly complex!

Certainly, La Niña is likely to have an influence. As we’ve previously written, this year has been influenced by a significant El Niño where there are warmer ocean temperatures in the Equatorial Pacific. La Niña is the opposite phase, with colder ocean temperatures in that region. For the UK this means there is a greater chance of summer storms, which would mean more rain and potential flooding. However, there are a lot of if’s!

At the moment our ears prick up with any mention of flooding, as Pixalytics has just completed a proof of concept project, in association with the Environment Agency, looking to improve operational flood water extent mapping information during flooding incidents.

The core of the project was to implement recent scientific research published by Matgen et al. (2011), Giustarini et al. (2013) and Greifeneder et al. (2014). So it was quite exciting to find out that Laura Guistarini was giving a presentation on flooding during the final day of last week’s ESA Living Planets Symposium in Prague – I wrote about the start of the Symposium in our previous blog.

Laura’s presentation, An Automatic SAR-Based Flood Mapping Algorithm Combining Hierarchical Tiling and Change Detection, was interesting as when we started to implement the research on Sentinel-1 data, we also came to the conclusion that the data needed to be split into tiles. It was great to hear Laura present, and I managed to pick her brains a little at the end of the session. At the top of the blog is a Sentinel-1 image of York, overlaid with a Pixalytics derived flood map in red for the December 2015 flooding based on the research published by Laura

The whole session on flooding, which took place on the last morning of the Symposium, was interesting. The presentations also included:

  • the use of CosmoSkyMed data for mapping floods in forested areas within Finland.
  • extending flood mapping to consider Sentinel-1 InSAR coherence and polarimetric information.
  • an intercomparison of the processing systems developed at DLR.
  • development of operational flood mapping in Norway.

It was useful to understand where others were making progress with Sentinel-1 data, and how different processing systems were operating. It was also interesting that several presenters showed findings, or made comments, related to the double bounce experienced when a radar signal is reflected off not just the ground, but another structure such as a building or tree. Again it is something we needed to consider as we were particularly looking at urban areas.

The case study of our flood mapping project was published last week on the Space for Smarter Government Programme website as they, via UK Space Agency, using the Small Business Research Initiative supported by Innovate UK, funded the project.

We are continuing with our research, with the aim of having our own flood mapping product later this year – although the news that August may have flooding means we might have to quicken our development pace!

Shrinking Satellites

Artist's rendition of a satellite - mechanik/123RF Stock Photo

Artist’s rendition of a satellite – mechanik/123RF Stock Photo

Satellites, like Dairy Milk, Mars Bars and Snickers, are getting smaller these days. Factors contributing to this shrinkage include new technology, continued miniaturisation of computing components and increased launch costs – whereas smaller size equals less weight and less weight equals lower costs.

According to the Union of Concerned Scientists database at the end of August 2015, the total launch weight of all satellites still in orbit is approximately two and half million kilograms! A sobering thought given that most of these are travelling in excess of seventeen thousand miles per hour! The Guinness Book of Records lists the heaviest commercial satellite as TerreStar-1 that had a launch mass of 6 903.8 kg in 2009; whereas the heaviest payload is the Chandra X-Ray Observatory Telescope that had a weight of 22 753 kg when launched in 1999. Although, it should be noted there are number of large military satellites in space whose launch weight cannot be verified. However, everyone can agree that these satellites are large and heavy!

Smaller satellites have been around since 2000, but it wasn’t until 2013 when 92 smaller satellites were launched in a single year that the numbers became significant. There are a number of categories of small satellites:

  • Minisatellites have a mass of between 100 kg and 500 kg.
  • Microsatellites have a mass between 10 kg and 100 kg.
  • Nanosatellites have a mass between 1 kg and 10 kg.
  • Picosatellites have a mass between 0.1 kg and 1 kg.
  • Femtosatellites have a mass between 10 g and 100 g.

Smaller satellites do have technical challenges. These include shorter overall life, limitations on propulsion and manoeuvring capabilities, less computing power and very low bandwidth communication systems. There have been a number of innovative solutions developed to respond these challenges, for example the UK company Oxford Space Systems have developed deployable structures, such as antennas and solar panels, based on the principles of origami using ‘shape memory’ materials. This has resulted in lighter, simple and cheaper deployable structures, for example, they have a parabolic antenna scalable up to twelve metres.

Technical issues are not the only challenges for small satellites, the regularity framework has not yet adapted to the changing market. As we’ve discussed previously, within the UK the Outer Space Act 1986 details the regulations for satellite launches. These are based around large satellites, and are not at all favourable to small satellites. The UK Space Agency recently issued a series of recommendations on how the regulatory approach might be tailored for smaller satellites.

Smaller satellites offer a more flexible, and cheaper, way of getting sensors and experiments into space. While this is great for smaller companies and educational institutes; commercial organisations are also taking advantage of this new trend. It will be interesting to see if the trend for smaller satellites continues to grow or, like mobile phones, the miniaturisation ceases and they get bigger again!

Collaborative Earth Observation

This image combines two Sentinel-1A radar scans from 3 and 15 January 2015 to show ice velocities on outlet glaciers of Greenland’s west coast. Courtesy of Copernicus data (2015)/ESA/Enveo

This image combines two Sentinel-1A radar scans from 3 and 15 January 2015 to show ice velocities on outlet glaciers of Greenland’s west coast. Courtesy of Copernicus data (2015)/ESA/Enveo

Establishing Earth observation systems are large and expensive projects with the combination of satellite development and launch alongside the ground based infrastructure, but the direct Earth observation community itself is fairly small. Working collaboratively and in partnerships can therefore help leverage initiatives, funding, research and publicity to demonstrate the value, and benefits, of our industry to the wider world.

Last week saw the announcement of three international collaborations for the UK, two at a national level and one at a local Pixalytics level! Firstly, the UK Space Agency announced 7 new collaborative projects between UK companies and international partners, funded through the International Partnerships Space Programme to develop satellite technology and applications in emerging economies.

The projects included e-learning solutions for schools in Tanzania, developing satellite air navigation, low cost telecommunications CubeSats, enhancing digital connectivity in Kenya and developing instruments for the next generation of meteorological and disaster management satellites. They were also two Earth Observation specific projects:

  • Enabling Kazakhstan’s Earth observation capability by developing and testing ground receiving stations ahead of the planned 2016 launch of the KazSTSAT small satellite mission, which will produce over 70 gigabytes of data daily.
  • Oceania Pacific Recovery and Protection in Disaster (RAPID) system which will aim to improve the use of satellite data in the aftermath of natural disasters, by getting critical decision influencing information to people in the field as quickly as possible.

The second collaboration was the UK signing the Ground Segment Cooperation agreement with ESA for the EU’s Copernicus programme. This sees the establishment of a data hub in Harwell to provide UK users with easier access to the free and publicly available data from the Copernicus Sentinel missions, and a wide range of complementary missions. The Sentinel missions will form the backbone of this data, with 14 planned satellite launches by 2025; eventually providing around 8 terabytes of data daily. Launched in 2014, Sentinel-1A is the first mission and carries a C-band Synthetic Aperture Radar (SAR) instrument providing all-weather, day-and-night imagery of the Earth’s surface; it is producing some stunning images including the one at the top of this blog. Next up will be Sentinel-2A this summer which will offer optical data across 13 spectral bands, with 4 bands at 10 m spatial resolution, 6 bands at 20 m and 3 bands at 60 m.

The final collaborative partnership is closer to home; as Pixalytics is delighted to announce that we have an international PhD student, through the European Union’s Erasmus Programme, coming to work with us over the summer.

Remote sensing and Earth observation are becoming increasingly collaborative, and is only likely to continue in the future. Everyone should encourage and support these developments, as working together will achieve much more than working alone.

The UK Space industry is healthy, but is it understood?

Artist's rendition of a satellite - 3dsculptor/123RF Stock Photo

Artist’s rendition of a satellite – 3dsculptor/123RF Stock Photo

Last week the UK Space Agency released the Executive Summary of its biennial report into the Size and Health of the UK Space Industry. It gives a positive overall picture with the industry having a turnover of £11.3bn in 2012/13; it’s growing at an average annual rate of 7.3%, exports are expanding and we are on track to achieve the aim of having a £40bn UK space industry by 2030. Despite all the positive news, the report raised questions on how well understood the industry is.

The industry is generally split into two sectors, upstream and downstream. Where upstream refers to the part of the industry that build and launch satellites and sensors into space; whilst downstream encompasses the products and services that use the data those objects collect. However, according to the report there is a growing belief that this definition is no longer fit for purpose as it doesn’t reflect the whole industry. Instead the report has split the industry into three sectors: upstream (infrastructure and technology), downstream (direct space services) and the new sector, the wider space economy – which covers space-enabled value added applications.

Evolving definitions is something that happens as industries, technologies and knowledge matures, but we would questions whether providing this split within the downstream activity is helpful. Pixalytics is an Earth observation company; we develop products and services from space data, offer consultancy support and undertake image processing. According to the new definitions our products and services are considered downstream activities, whereas our consultancy and image processing are part of the wider space economy. It’s rarely, if ever, true, that using space data alone can be used to answer customer’s questions. Instead it’s about integrating that data with other information and knowledge, to create a product that adds value for the customer. Hence, a huge part of our work will always span the downstream and wider space economy sectors. So do these new changes create more definition or confusion?

The report is based, amongst other things, on an industrial survey. Invitations to participate in the survey were sent to 228 companies who were judged to be part of the wider space economy. Only 12 replied, that’s a response rate of just 5.26%! We need to understand why there is such a poor response rate, is it apathy, a lack of understanding that they use space services or do they not consider themselves defined by their data sources? If a company uses satellite data, overflights, in-situ measurements and scientific modelling to deliver their services, are they part of the wider space economy? We use desks and bookshelves in our office, but it doesn’t make us a furniture business.

Like many things, communication is the key. If we are evolving our definition of the industry we can’t do it alone. We need to engage with the companies within the industry, and crucially with those we are trying to bring in. Inclusive discussion, education and understanding at all levels are vital, if we want to develop a vibrant and participative wider space economy.

Celebrating World Space Week!

Did you know this is World Space Week? In 1999, the United Nations declared that World Space Week would occur between the 4th and 10th October each year. It chose these two dates because:

  • On 4th October 1957 the first human-made Earth satellite, Sputnik 1, was launched; and
  • On 10th October 1967 The Treaty on Principles Governing the Activities of States in the Exploration and Peaceful Uses of Outer Space, including the Moon and Other Celestial Bodies was signed – which was discussed in last week’s blog.

This annual international celebration supports events in countries around the world to educate people about space, encourage everyone to benefit from the space industry and inspire young people to get involved in science, technology, engineering and maths.

Space: Guiding Your Way is the theme for 2014 and focuses on all aspects of satellite navigation, from the GPS in your smartphone, though road navigation, shipping and disaster recovery. According to the World Space Week website there are over 700 events in over 60 countries taking place during this week’s celebration: everywhere from Afghanistan to Venezuela has an event, supported by a number of global events. The events vary from educational presentations, conferences and demonstrations through to water rocket competitions, training like an astronaut or even having coffee with an astronomer. The UK Space Agency has a ‘Tweet the Expert 2014’ event running between 2pm and 3pm each day this week.

Rumple Quarry in Plymbridge Woods

Rumple Quarry in Plymbridge Woods

Here at Pixalytics, we didn’t want World Space Week to go by without getting involved, and so we’ve taken part in the EarthCache Virtual 5K. Although, don’t let the word virtual fool you as there has been running! EarthCache aims to teach people about the world by highlighting interesting geologic or geographic phenomenon or features you can visit, and there are almost eighteen thousand such sites worldwide. To participate in the Virtual 5K run, you have to run at least 5K starting or ending at a registered EarthCache site.

Sam Lavender at the start of her 5K run

Sam Lavender at the start of her 5K run

Our closest EarthCache site is a quarry site in Plymbridge Woods, pictured above. Records indicate it has been worked as far back as 1683, and slate from here was reportedly used in the building of Devonport Dockyard. In addition to the quarry site, there is also a viaduct and ruins of a waterwheel and quarry workers cottages. To the right is the picture of Sam at the start of her 5K run.

Are you going to join in World Space Week? Have a look at the website and see if you can find an activity, or join us in the virtual run. Whatever you decide to do, remember you’re celebrating space and your part in this industry.

What the UK has launched into space

Yesterday NASA announced its ambition to launch astronauts into space from American soil by 2017, and here the Government is currently assessing eight potential sites – including one in Cornwall – to be a UK spaceport by 2018. This nationalistic view of launch pads got me wondering about what the UK has previously launched in space and crucially, where from?

Artist's rendition of a satellite - paulfleet/123RF Stock Photo

Artist’s rendition of a satellite – paulfleet/123RF Stock Photo

Under the United Nations Convention on the Registration of Space Objects 1976 a country is deemed to have launched something into space if it does so from its own soil, or it organises someone else to launch it on its behalf. This convention also places obligations on each signatory country, and the UK is one, to make information about all such launches readily available. Details are on the UN website, and in June the UK Space Agency released the UK Registry of Outer Space Objects which makes interesting reading.

According to these sources the UK has launched 67 objects, mostly satellites, into space, beginning in April 1962 with the Ariel 1 satellite. At the time, the United Kingdom was the third country to operate a satellite, after the Soviet Union and the USA. Sadly Ariel 1 had a short four month operational lifespan as it was damaged by the Starfish Prime high-altitude nuclear test. Of all the UK’s launches 63% are still operational; a further 22% are in orbit, but non-operational; while the remaining 15% have decayed and returned to earth.

Ariel 1 was launched from the Cape Canaveral Air Force Station and since then another 17 launches have occurred from American soil, although the most popular UK launch site is French Guiana spaceport with 30 launches. We’ve also launched from Kazakhstan, Russia, Australia, India, Kenya and one even from a floating platform in the Pacific Ocean.

We’ve not launched objects every year; our last fallow year was 2004 and 2013 was the most prolific year with eight launches. Perhaps unsurprisingly a third of the satellites have been launched for telecommunications purposes, with another 18% for military communications. The vast majority of the remainder are for scientific, technological or engineering research purposes. Of the current operational satellites, 56% are in geosynchronous orbits, 30% in low earth orbits and the remaining 14% in medium earth orbits.

This doesn’t give quite the full picture of the UK’s space activities. There are an additional forty five satellites where the UK was not the launching country, but has issued an Outer Space Licence (described in our recent blog) which are listed in the Supplementary Registry of Space Objects on the UK Space Agency website.

The UK has a significant, and growing space sector, and who knows in a few years we may see satellites launched from our shores in Cornwall, Wales or Scotland. Exciting times ahead!

Can we launch a satellite?

We’ve written a number of blogs about satellites being launched, and it got me wondering if anybody can launch one – in case Pixalytics ever wants to go into space. I know we’re a micro business, but we think big! Unsurprisingly, it turns out that you can’t just launch a satellite.

Artist's rendition of a satellite - paulfleet/123RF Stock Photo

Artist’s rendition of a satellite – paulfleet/123RF Stock Photo

In order for any UK company, or individual, to launch any object into space, operate a space object or engage in any activity in outer space, you need to have a licence. The licensing arrangements are detailed in the Outer Space Act 1986, which brought into UK law the provisions of the 1967 United Nations Outer Space Treaty.

The UK Space Agency manages the licencing procedure on behalf of the UK Government, and in order to start the process you need to fill in an application form. This requires:

  • Details of the applicant applying for the licence
  • The nature of the space activity, including technical details about the mission, the satellite, the launch arrangements, ground receiving stations and emergency arrangements.
  • Orbital details including nodal period, inclination, apogee and perigee.
  • Radio frequencies to be used to ensure they won’t cause interference issues.
  • Financial details including mission costs and the applicant’s financial standing to ensure that they can meet their licence obligations.
  • Insurance arrangements – The standard requirement is to have insurance of at least €60 million against third party liabilities arising during both launch and operational phases of the mission. However, if there are any proven third party costs resulting from the launch or operation, the licensees are liable for unlimited damages!
  • End of life disposal arrangements.

In addition, you need to send a non-refundable licence fee of £6,500; although interestingly, educational institutions carrying out activities for the purpose of scientific research or teaching don’t have to pay this fee. This starts to explain why a number of Universities have launched satellites, which we highlighted in an earlier blog.

Once submitted a variety of Government organisations will assess the application including the UK Space Agency, Department for Business Innovation and Skills, OFCOM and any third party technical experts. A licence will only be issued if it’s clear that the activities will not jeopardise public health or the safety of persons or property, will be consistent with the UK’s international obligations and will not impact on our national security.

Once a licence has been granted, the licensee has a number of ongoing obligations; including these two intriguing ones:

  • Preventing the contamination of outer space or adverse changes in the environment of the earth; and
  • Avoid any interference with the activities of others in the peaceful exploration and use of outer space.

The guidance suggests that you should submit your application at least six months before launch, although to me given the time, and cost, of building and launching a satellite, six months seems a little late in the day.

Whilst satellite technology may be getting smaller and cheaper with the development of cubesats and nanosats, the requirements around launching them are the same as any other satellite. The UK Government acknowledged this in response to the 2012 consultation on the Outer Space Act in 2012, by noting that the regulations for smaller satellites needed reviewing.

Pixalytics is a few years away from getting into space, our first job is work out what paradigm shifting Earth observation data we’d collect, but it’s useful to have an understanding of the steps we’d have to take. Anyone else thinking of taking one small step?

America’s Roadmap for Earth Observations

Have you all been keeping up with your reading of policy documents issued by the Executive Office of the President of the United States? If not, you may have missed their National Plan for Civil Earth Observations (EO), issued a couple of weeks ago. Given the US Government is the largest provider of EO data in the world this is important for everyone working in the field, particularly as it estimates that EO activities are worth $30 billion to the US economy.

The National Plan builds on the US National Strategy for Civil Earth Observations issued in 2013; such national Earth observations strategies aren’t unusual, the UK has issued two in recent years with the UK Space Agency Earth Observation Strategy in October 2013 and the Department of Energy and Climate Change Earth Observation Strategy in June 2012. However, what makes the National Plan more interesting, and valuable, is that it ranks US priorities for civil EO together with the actions they intend to take to deliver them.

Landsat 8 showing London, data courtesy of the USGS

Landsat 8 showing London, data courtesy of the USGS

The plan identifies five priorities, with the top two focussing on achieving continuity of long-term sustained EO. The number one priority is to maintain observations considered vital to public safety; national economic and security interests; and critical to scientific research; this includes the continuity of Landsat multispectral information, the GPS network and a variety of weather, land and ocean measurements. Second priority is observations focussing on changes in climate, greenhouse gases, biodiversity and ecosystems often in collaboration with international partners. The third priority surrounds short-term experimental observations of less than seven years duration, such as measurements for specific scientific research, first-of-their-kind observations, innovations and proof of concept work. The final two priorities are around improvements to service-life extensions; and the assessment, and prioritization, of EO systems.

  1. Whilst the priorities are interesting, far more interesting, and valuable, are the eight actions the US Government intends to take to deliver these priorities:
    Increase the integration of EO data, and making data available to everyone irrespective of the original purpose. By eliminating the silo approach to data, it will offer greater potential for innovative research.
  2. Implement the Big Earth Data Initiative (BEDI) to provide uniform methodologies and practices for the handling of EO data to enable a wider group of users, without specialist knowledge, to find, obtain, evaluate, understand, compare and use new and legacy data.
  3. Increase efficiency and cost savings through streamlining processes, coordinated acquisition of data, cooperation and collaborative working with commercial and non- US owned satellites.
  4. Improve spatial resolution, temporal cycle, sample density and geographic coverage of observation networks with both new observation systems and technical upgrades.
  5. Maintain the physical, computing, communication and human infrastructure required to deliver EO.
  6. Encourage private companies to invest in the space sector. However, it makes clear that it intends to maintain the principles of open data sharing which will make it interesting to see how, and where, private firms will get returns on their investments.
  7. Continuing to work with other international bodies and space agencies to provide access to greater EO data and supporting collaborative research.
  8. Using citizen science, crowdsourcing and private sector initiatives to leverage EO data innovations.

The National Plan is a detailed document and it will be interesting to see the UK Space Agency, or perhaps the European Space Agency, version. Any EO business working in, or with firms in, the US needs to begin planning for these developments. Would does your business need to do to reposition your core competences, skill base or infrastructure to be able to exploit these opportunities? Even if you don’t currently work in the US take note, the journey outlined will impact the EO community.