Two New Earth Observation Satellites Launched

Artist's rendition of a satellite - paulfleet/123RF Stock Photo

Artist’s rendition of a satellite – paulfleet/123RF Stock Photo

Two new Earth observation satellites were launched last week from European Space Centre in Kourou in French Guyana, although you may only get to see the data from one. Venµs and OPTSAT-3000 were put into sun synchronous orbits by Arianespace via its Vega launch vehicle on the 1st August. Both satellites were built by Israel’s state-owned Israel Aerospace Industries and carry instruments from Israel’s Elbit Systems.

Venµs, or to give its full title of Vegetation and Environment monitoring on a New MicroSatellite, is a joint scientific collaboration between the Israeli Space Agency (ISA) and France’s CNES space agency.

Venµs is focussed on environmental monitoring including climate, soil and topography. Its aim is to help improve the techniques and accuracy of global models, with a particular emphasis on understanding how environmental and human factors influence plant health. The satellite is equipped with the VENµS Superspectral Camera (VSSC) that uses 12 narrow spectral bands in the Visible Near Infrared (VNIR) spectrum – ranging from 420nm wavelength up to 910 nm wavelength – to capture 12 simultaneous overlapping high resolution images which are then combined into a single image. The camera uses a pushbroom collection technique and has a spatial resolution of 5.3m and a swath size of 27.56 km.

Venµs won’t have full global coverage; instead there are 110 areas of interest around the world that includes forests, croplands and nature reserves. With a two day revisit time, during which time it completes 29 orbits of the planet. This means every thirtieth image will be collected over the same place, at the same time and with the same angle. This will provide high resolution imagery more frequently than is currently available from existing EO satellites. The consistency of the place, time and angle will help researchers better assess fine-scale changes on the land to improve our understanding of the:

  • State of the soil,
  • vegetation growth,
  • detection of spreading disease or contamination,
  • snow cover and glacial movements; and
  • sediment movement in coastal estuaries

A specific software algorithm has been developed for the mission to work with the different wavelengths to remove clouds and aerosols from the satellite’s imagery, giving clear images of the planet irrespective of atmospheric conditions.

The second satellite launched was the OPTSAT-3000 which is an Italian controlled optical surveillance satellite, which will operate in conjunction with the COSMO-SkyMed radar satellites giving Italy’s Ministry of Defence independent autonomous national Earth observation capability across optical and radar imagery.

This is a military satellite and so some of the details are difficult to verify. As mentioned earlier the instrument was made by Elbit systems, and the camera used usually offers a spatial resolution of around 0.5 m. However, it has been reported that the resolution will be much closer to 0.3m because the satellite is in a very low earth orbit of a 450 km.

OPTSAT-3000 will collect high resolution imaging of the Earth, it’s not clear at this stage whether any of the imagery will be made available for commercial/scientific use or purchase, although it is worth noting that COSMOS-SkyMed images are sold.

Two more Earth observation satellites launched shows that our industry keeps on moving forward! We’re really interested, and in OPTSAT’s case hopeful, to see the imagery they produce.

Earth Observation Looking Good in 2017!

Artist's rendition of a satellite - paulfleet/123RF Stock Photo

Artist’s rendition of a satellite – paulfleet/123RF Stock Photo

2017 is looking like an exciting one for Earth Observation (EO), judging by the number of significant satellites planned for launch this year.

We thought it would be interesting to give an overview of some of the key EO launches we’ve got to look forward to in the next twelve months.

The European Space Agency (ESA) has planned launches of:

  • Sentinel-2B in March, Sentinel-5p in June and Sentinel-3B in August – all of which we discussed last week.
  • ADM-Aeolus satellite is intended to be launched by the end of the year carrying an Atmospheric Laser Doppler Instrument. This is essentially a lidar instrument which will provide global measurements of wind profiles from ground up to the stratosphere with 0.5 to 2 km vertical resolution.

From the US, both NASA and NOAA have important satellite launches:

  • NASA’s Ionospheric Connection Explorer (ICON) Mission is planned for June, and will provide observations of Earth’s ionosphere and thermosphere; exploring the boundary between Earth and space.
  • NASA’s ICESat-2 in November that will measure ice sheet elevation, ice sheet thickness changes and the Earth’s vegetation biomass.
  • In June NOAA will be launching the first of its Joint Polar Satellite System (JPSS) missions, a series of next-generation polar-orbiting weather observatories.
  • Gravity Recovery And Climate Experiment – Follow-On (GRACE_FO) are a pair of twin satellites to extend measurements from the GRACE satellite, maintaining data continuity. These satellites use microwaves to measure the changes in the Earth’s gravity fields to help map changes in the oceans, ice sheets and land masses. It is planned for launch right at the end of 2017, and is a partnership between NASA and the German Research Centre for Geosciences.

Some of the other launches planned include:

  • Kanopus-V-IK is a small Russian remote sensing satellite with an infrared capability to be used for forest fire detection. It has a 5 m by 5 m spatial resolution over a 2000 km swath, and is planned to be launched next month.
  • Vegetation and Environment monitoring on a New MicroSatellite (VENµS), which is partnership between France and Israel has a planned launch of August. As its name suggests it will be monitoring ecosytems, global carbon cycles, land use and land change.
  • KhalifaSat is the third EO satellite of United Arab Emirates Institution for Advanced Science and Technology (EIAST). It is an optical satellite with a spatial resolution of 0.75 m for the visible and near infrared bands.

Finally, one of the most intriguing launches involves three satellites that form the next part of India’s CartoSat mission. These satellites will carry both high resolution multi- spectral imagers and a panchromatic camera, and the mission’s focus is cartography. It’s not these three satellites that make this launch intriguing, it is the one hundred other satellites that will accompany them!

The Indian Space Research Organisation’s Polar Satellite Launch Vehicle, PSLV-C37, will aim to launch a record 103 satellites in one go. Given that the current record for satellites launched in one go is 37, and that over the last few years we’ve only had around two hundred and twenty satellites launched in an entire year; this will be a hugely significant achievement.

So there you go. Not a fully comprehensive list, as I know there will be others, but hopefully it gives you a flavour of what to expect.

It certainly shows that the EO is not slowing down, and the amount of data available is continuing to grow. This of course gives everyone working in the industry more challenges in terms of storage and processing power – but they are good problems to have. Exciting year ahead!