Plymouth Student’s Shot at Space!

From left to right: Fraser Searle (President), Sam Kennerley (Secretary) of Plymouth University Space Society, with the equipment to launch the balloon.

Plymouth University’s Space Society plans to send a small bottle of gin ‘into space’ attached to a weather balloon at the end of March.

The aim is to send the bottle 100,000 feet above the Earth, equivalent to 30 kilometres, and then bring it back safely. On its return, in true student fashion, they intend to use it to drink a few ‘space cocktails’!

The idea for launching the weather balloon began last summer when Fraser Searle and Nick Hardacre, who lead the Space Society at Plymouth University, were looking for ways to create interest in space in the local community. They originally hoped to send a bottle of local gin up, but soon found the challenges of working in a sub zero environment. It would have taken a balloon one and half times the size of the current one and double the volume of helium, so they changed to the shot glass.

They’ll also be attaching cameras and tracking equipment to the six metre diameter balloon to record and monitor the journey. The students have a roller coaster of emotions at the moment as Fraser explained, “We’re feeling excited, but I do get waves of nerves as to whether the glass and the cameras will return unharmed. We’re also wondering if the pictures and videos will be clear.”

Technically, the weather balloon won’t get into space. It should reach the upper half of the stratosphere, an area known as near space. As this area stretches from 20km to 100km above the Earth, ‘near’ is a relative term.

Pixalytics got involved with the project before Christmas, when we helped with sponsorship to enable the students to finish purchasing the necessary equipment. We’re also hoping to provide support in reviewing and interpreting the images the cameras collect on the journey. It’ll be interesting to compare what the weather balloon sees, with what various satellite imagery shows.

We’re strong supporters of events that encourage students and early career scientists to enhance their understanding of remote sensing, space and science. We sponsor student conferences and prizes that take place in the UK. So, it’s fantastic to get involved in something much closer to home.

Launching a weather balloon requires permission from the Civil Aviation Authority, and is also highly weather dependent. A planned launched at the end of January had to be abandoned as the balloon was likely to end up in Portsmouth or Calais harbour.

However, the team have once again got the relevant permissions to try again this coming week. The exact launch date will depend on the wind and weather patterns around Plymouth, which are always fairly turbulent. Fraser said, “We’ll be glued to the online predictors to find a launch slot.”

This is great local project for Plymouth, and we’re pleased to be able to support it. We have our fingers crossed for suitable weather, but only time will tell if they manage to conquer space!

GOES-R Goes Up!

Artist impression of the GOES-R satellite. Image courtesy of NASA.

Artist impression of the GOES-R satellite. Image courtesy of NASA.

On Saturday, 19th November, at 10.42pm GMT the Geostationary Operational Environmental Satellite-R Series (GOES-R) is due to be launched from Cape Canaveral in Florida, USA.

The GOES-R is a geostationary weather satellite operated by the National Oceanic & Atmospheric Administration (NOAA) Department of the US Government. It will the latest in the NOAA’s GOES series of satellites, and will take the moniker GOES-16 once it is in orbit, joining the operational GOES satellite constellation comprising of GOES-13, GOES-14 & GOES-15.

It will be put into a geostationary orbit at around 35 800 km above the Earth which will allow it to match the Earth’s rotation, meaning that it will effectively stay over a specific point on the Earth. It will be located approximately at 137 degrees West longitude, and through the constellation will provide coverage for North, Central and South America together with the majority of the Atlantic and Pacific Oceans.

Artists impression GOES-R satellite and its instruments. Image courtesy of NASA.

Artists impression GOES-R satellite and its instruments. Image courtesy of NASA.

The instrument suite aboard the satellite has three types: Earth facing instruments, sun facing instruments and space environment instruments.

Earth Facing Instruments: these are the ones we’re most excited about!

  • Advanced Baseline Imager (ABI) is the main instrument and is a passive imaging radiometer with 16 different spectral bands: two visible bands – Blue and Red with a spatial resolution of 0.5km, four near-infrared with spatial resolutions of 1 km; and ten infrared bands with a spatial resolution of 2 km. As its in a geostationary orbit its temporal resolution is extremely high with the full mode being where the Western Hemisphere is imaged every 5 – 15 minutes, whereas in its Mesocale mode (providing a 1000 km x 1000 km swath) the temporal resolution is only 30 seconds.
  • Geostationary Lightning Mapper (GLM) is, as the name suggests, an instrument that will measure total lightning, and both in-cloud and cloud-to-ground lightning across the Americas. It is an optical imager with a single spectral band of 777.4 nm which can detect the momentary changes in the optical scene caused by lightning. The instrument has a spatial resolution of approximately 10 km.

Sun Facing Instruments

  • Extreme Ultraviolet and X-ray Irradiance Sensors (EXIS) instrument has two sensors to monitor solar irradiance in the upper atmosphere; these are the Extreme Ultraviolet Sensor (EUVS) and the X-Ray Sensor (XRS).
  • Solar Ultraviolet Imager is a telescope monitoring the sun in the extreme ultraviolet wavelength range.

Space Environment Monitoring Instruments

  • Space Environment In-Situ Suite (SEISS) consists of four sensors:
    • Energetic Heavy Ion Sensor (EHIS) to measure the proton, electron, and alpha particle fluxes at geostationary orbit.
    • Magnetospheric Particle Sensor (MPS) is a magnetometer measuring the magnitude and direction of the Earth’s ambient magnetic field; and has two sensors the MPS-LO and MPS-HI.
    • Solar and Galactic Proton Sensor (SGPS) will, as the name indicates, measure the solar and galactic protons found in the Earth’s magnetosphere.
  • Magnetometer will measure of the space environment magnetic field that controls charged particle dynamics in the outer region of the magnetosphere.

The ABI instrument is the most interesting to us in terms of Earth observation, and it will produce a remarkable 25 individual products including Aerosol Detection, Cloud and Moisture Imagery, Cloud Optical Depth, Cloud Particle Size Distribution, Cloud Top Measurements, Derived Motion Winds & Stability Indices, Downward Shortwave Radiation at the Surface, Fire/Hot Spotting, Hurricane Intensity Estimation, Land Surface Temperature, Moisture & Vertical Temperature Profiles, Rainfall Rate, Reflected Shortwave Radiation at the Top Of Atmosphere, Sea Surface Temperature, Snow Cover, Total Precipitable Water and Volcanic Ash. If you want to look at the details of specific products then there are Algorithm Theoretical Basis Documents (ABTDs) available, which are like a detailed scientific paper, and can be found here.

The GOES-R is the first in a series of four satellites to provide NOAA with improved detection and observation of environmental events. It is not a cheap series of satellite, with the cost of developing, launching and operating this series estimated to be around $11 billion. However, this will provide observations up to 2036.

We’re excited by this launch, and are looking forward to being able to utilise some of this new generation weather information.