Multi-Sensor Ocean Colour Atmospheric Correction for Time-Series Data: Using all the informational available

Dr Samantha Lavender

Pixalytics Ltd
Tamar Science Park, Plymouth

School of Marine Science & Engineering Plymouth University

slavender@pixalytics.com http://www.pixalytics.com/

Atmospheric Correction – Simplistic approach

$$R_{toa} = R_w * T_d + R_v$$

Atmospheric contribution:

$$R_v = R_r + R_a + R_{error}$$

- Background atmospheric correction based on Lavender and Nagur (2002)
- Single scattering aerosol correction using the angstrom exponent for aerosol extrapolation i.e. 'CZCS type' approach

Atmospheric Correction – Input data

• MERIS: 14, 22, 24, 25 and 30 March 2003

MODIS-Aqua: 22, 23, 24, 26 and 31 March 2003

• MODIS-Terra: 22, 23, 24, 26, 28, 30 and 31 March 2003

SeaWiFS: 22, 23, 24 and 30 March 2003

Landsat ETM+: 24 March 2003

Ocean Sciences, Feb 2014

Pixalytics

Conclusions

- Approach:
 - Creation of linked modules that allow multiple sensors to be processed
 - Running simplistic model in parallel with more complex plugins to understand what the complexity / each approach is contributing
 - Use aerosol information from previously processed imagery and external sources to aid in the aerosol correction
- Remotely sensed data is more than pixels the patterns also provide additional information
- Initial results are promising, but the key is understanding the detail...

