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ABSTRACT 

The E-Collaboration for Earth Observation (E-CEO) 
project aimed to deliver a collaborative platform that, 
through data challenges, would improve the adoption and 
outreach of new applications and methods to process 
Earth Observation (EO) data. To test the E-CEO 
platform, a contest based on the Atmospheric Correction 
(AC) of ocean color data was proposed. Existing 
processors were tested, and the evaluation results 
analysed.  
 
Overall, the challenge showed that the E-CEO platform 
can be used to simplify the process of comparing 
different processors. Once the different participants’ 
software is uploaded and connected to the data packages, 
the processing runs automatically, and so the processing 
is quick to re-run and adjust. However, additional work 
has shown it’s important to continue to have human 
involvement in the evaluation step as otherwise statistics 
may be incorrectly interpreted due to outliers. 
 
1. INTRODUCTION 

Data challenges have become a method of promoting 
innovation within data-intensive applications; building or 
evolving user communities, and potentially developing 
sustainable commercial services. The participants’ can 
utilise the vast amounts of information (both in scope and 
volume) that’s available online, and take advantage of 
reduced processing costs when virtual machines are 
provided for. 
 
Round robin activities are part of the Ocean Colour 
community activities with recent examples having been 
carried out within the context of the European Space 
Agency (ESA) Ocean Colour Climate Change Initiative 
(OC-CCI) and CoastColour projects [1]. The OC-CCI 
project carried out a round robin for AC, which was 
focused on Case 1 (phytoplankton dominated) waters; 
Phase 2 started in 2014, and is being extended to Case 2 
(coloured dissolved organic matter and / or suspended 
sediment dominated) dominated waters with the version 

3.0 dataset due for release at the end of June 2016. 
However, there are limited opportunities for new 
approaches to be adopted as any approach needs to be 
ready to run on multiple satellite missions. There was 
also a theoretical / simulated data comparison carried out 
within the context of the International Ocean Colour 
Coordinating Group (IOCCG) [2]. This has since been 
extended to an ‘Intercomparison of Atmospheric 
Correction Algorithms over Optically-Complex Waters’ 
[3], which started in January 2014, but has yet to publish 
its results. 
 
Within the frame of the E-CEO project, funded by ESA, 
the activity is called a challenge; a nominal challenge 
winner will be identified (i.e. the Application that scores 
the highest ranking overall), but it’s accepted this will be 
under a specific set of criteria and what’s of scientific 
interest for this Challenge is the underlying knowledge 
gained. For the participants, running their own code on a 
provided cloud platform might be a new experience and 
so it’s expected that at least some may require support to 
have their in-house breadboards ported to this 
environment.  
 
2. METHODOLOGY 

 
2.1. E-CEO Platform 

The backbone of the E-CEO platform is a common 
environment where the applications can be developed, 
deployed and executed. Then, the results are published 
via a common visualization platform for their effective 
validation and evaluation.  
 
The E-CEO Web Portal and Data Repository has been 
developed from the ESA Grid Processing on Demand (G-
POD) platform with the Cloud Interoperability 
Operational Pilot (CIOP) Sandbox and Runtime 
Environment (RTE) as the E-CEO Private Development 
Environment and Common Deployment / Evaluation 
environments, respectively. By utilising G-POD, the E-



 

 

CEO platform was provided with the capability to 
manage a large number of computing nodes and host EO 
processors that would need to access several tens of 
Terabytes of on-line EO data. Then, by also linking into 
CIOP, the G-POD system could be extended to allow 
participants’ to develop and test their new applications 
within a virtualized environment prior to their 
deployment and exploitation.  
 
In addition, the operational Single Sign-On system for 
ESA Web-based Applications (UM-SSO) is used for 
managing E-CEO users’ access to the platform. 
 
2.2. Example Challenge 

The example challenge was based around the AC of 
ocean colour: processing Level 1 (L1) top of atmosphere 
calibrated radiances / reflectances to Level 2 (L2) bottom 
of atmosphere calibrated radiances / reflectances and 
derived products. With this being the first challenge that 
was run on the new E-CEO platform, it was decided to 
restrict this Challenge to a maximum of 10 participants 
for the 2014 activity. 
 
The input data were the Medium Resolution Imaging 
Spectrometer (MERIS) L1 full resolution full swath 
(FRS) files and matchups were extracted for sites held 
within the National Aeronautics and Space 
Administration (NASA) bio-Optical Marine Algorithm 
Data set (NOMAD) [4], with processors tested including 
the: 
 
● ESA BEAM Toolbox [5] SMAC processor - The 
Simplified Method for Atmospheric Correction [6] is 
primarily designed as an above-land rather than above-
water processor and so only a continental or desert air 
mass is available. 
 
● NASA SeaWiFS Data Analysis System (SeaDAS) 
[7] v7.1 standard AC processor: the processor that’s used 
for the systematic processing of ocean colour missions by 
the NASA Ocean Biology Processing Group, which uses 
the near infra-red to estimate the aerosol contribution 
whilst accounting for a water signal in turbid waters [8]. 
 
● Optical Data processor of the European Space 
Agency (ODESA) MEGS® processor [9]: the prototype 
MERIS processor that’s used to perform MERIS 
reprocessing activities. 
 
All these applications were made available via the Data 
Challenge GitHub [10] organization repositories; used so 
that participants could potentially fork applications and 
link to their own GitHub repositories. In addition, 
participants would also have the possibility to integrate 
their own processing tools as long as they supported the 
extraction of a 3 by 3 kernel using ESA BEAM Toolbox 
PixEx operator or any other tool with a similar output 

format. 
 
2.3. Participants Scenarios 

As this was the first test of the E-CEO platform, a series 
of application scenarios were setup where different 
participants were created by varying the AC processor or 
how it was run i.e. varying the auxiliary data 
(meteorological information that includes mean sea level 
atmospheric pressure, surface wind speed, relative 
Humidity and total column ozone) and the provided 
Aerosol Optical Depth (AOD) for the SMAC processor.  
 
The six participants were: 

 A - BEAM (SMAC) with European Centre for 
Medium-Range Weather Forecasts (ECMWF) 
auxiliary data, held within the MERIS L1 file, 
CONTINENTAL aerosol and AOD of 0.1 

 B - BEAM (SMAC) with ECMWF auxiliary 
data, CONTINENTAL aerosol and AOD of 0.2 

 C - BEAM (SMAC) with ECMWF auxiliary 
data, CONTINENTAL aerosol and AOD of 0.3 

 D - SeaDAS with climatological auxiliary data  
 E - SeaDAS with National Centers for 

Environmental Prediction (NCEP) auxiliary 
data 

  F - MEGS with ECMWF auxiliary data 
 
2.4. Evaluation Data Packages 

Three sites from the NASA NOMAD dataset [4], which 
are used for the vicarious calibration and validation of 
ocean colour data, were selected: 
 

 “Aqua Alta” Oceanographic Tower (AAOT, 
45°N 12°E) in the northern Adriatic Sea. 

 BOUSSOLE (BOUSS, 43°N 8°E) buoy in the 
Ligurian Sea, one of the sub-basins of the 
Western Mediterranean sea. 

 MOBY (Marine Optical BuoY, 21°N 157°W) 
moored off of the island of Lanai in Hawaii. 

 
Then, 371 Envisat MERIS FRS scenes were selected to 
derive the statistics for the evaluation metrics and 
subsequent ranking. Plus a sub-set of twenty were 
included in a Data Package for computing software 
performance metrics. 
 
2.5. Evaluation Process 

This evaluation was based on a decision tree of 
evaluation criteria (Fig. 1), with three main branches that 
encapsulated the main criteria for the evaluation. The 
approach novelty included parallelization of the code, 
scalability & algorithm complexity, programming 
language and classes of algorithm. It was decided not to 
include this branch for this contest as pre-existing 
algorithms were being tested. 



 

 

 
Figure 1. Top level evaluation criteria; taken from [11]. 
2.6. Evaluation Criteria 

Therefore, the evaluation was undertaken in two steps, 
with the first step targeting the retrieval of the computing 
metrics. This was evaluated on the platform itself, as the 
participants’ software was run within the E-CEO 
Evaluation environment. The criteria included the central 
processing unit (CPU) load, processing time, Random-
access memory (RAM) usage and disk usage as specified 
within the E-CEO Evaluation Method technical note 
[11]. 
 
All participants’ applications were ran using the twenty 
MERIS FRS Data Package to produce the MERIS L2 
products. The applications were executed in the L2 
production mode, with the computing metrics 
automatically published in the E-CEO Web Portal [12] 
for normalization and ranking. 
 
The second step targeted the extraction of a 3 by 3 kernel 
of the mean reflectances (for 412, 443, 490, 510 and 560 
nm) for the evaluation sites. To address this extraction, 
the participants’ applications were ran against the 371 
MERIS FRS products in an “evaluation” mode. 
 
The Evaluator used an IPython notebook [13], now called 
Jupyter and with support for multiple languages, to 
derive the final R correlation coefficient (rfinal) following 
the process below, with Fig. 2 showing what the IPython 
output looks like within GitHub: 
 
1. For each waveband (412, 443, 490, 510 and 560 nm) 

and evaluation site (AAOT, BOUSS and MOBY) 
calculate the Pearson correlation factors. 
 

2. For each waveband aggregate the sites’ Pearson 
correlation factors using Eq. 1. 
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Where x is the wavelength of each waveband 
 
3. Derive the combined spectral Pearson correlation 

factor using Eq. 2 where the weightings have been 
calculated from the NOMAD dataset i.e. how good 
a correlation can be expected for each waveband. 
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Figure 2. Example of the IPython output within GitHub. 
 
The combined spectral rfinal value was then manually 
inserted in the E-CEO Normalization and Ranking tool. 
 
2.7. Criteria Weights 

The philosophy used for E-CEO weighting was to elicit 
weights for criteria through five semantic terms [14], and 
then in the background they are transformed into 
numerical classifications that included a penalization or 
reward depending on the satisfaction of the respective 
criterion. For example, if a criterion is very important 
(lower to upper assigned weighting range is 0.8 to 1.0), 
but the normalised score for a participant is low (0.1) then 
the final score for that participant would be 0.82: 
 

 *upper lowerlower
Finalscore weighting weighting weighting score    

(3) 
 
If the normalised score for a different participant is high 
(0.9) then their final score will be 0.98. If, however, this 
criteria was only classed as of average importance 
(weighting range is 0.4 to 0.6) then a high score of 0.9 
would result in a final (weighted) score of 0.58. 
 
The weights were decided in advance of the evaluation 
being run, with a strong focus on the model / algorithm 
performance against the in-situ data for this Challenge. 
 
3. RESULTS 

Once the evaluation has been completed for each 
participant, the resulting scores are shown within the 
Evaluation results section of the E-CEO Web Portal [15] 
as the component scores for the individual participant 
(Fig. 3 Top) and overall set of scores for all participants 
(Fig. 3 Bottom).  
 



 

 

3.1. Validation of the Pearson Correlation Component  

To check whether the results produced by the E-CEO 
platform were correct, the output MERIS and in-situ text 
files have been read into Interactive Data Language 
(IDL) code and a Pearson correlation performed. For the 
IDL code, the filtering removes all the matchups where 
there is a zero value (missing data) for either the MERIS 
or in-situ data. 
 

Figure 3. Individual scoring for participant a (top) and 
final ranking of the participants (bottom), with 

participant a being the highlighted one. 
 
The results show reasonable agreement to those from the 
E-CEO platform, see Tab. 1. The differences from the 
platform were caused by the filtering approach used, but 
were not significant enough to influence the conclusion - 
that the platform was implemented correctly and that 
there was a difficulty in using automatically calculated 
statistics without intelligent filtering of the data also 
being applied. 
 
Table 1: Correlation statistics calculated using the IDL 

implementation for participant a 

site / 
waveband 

412 
nm 

443 
nm 

490 
nm 

510 
nm 

560 
nm

AAOT 0.008 0.164 0.371 -nan 0.468 

BOUSSOLE -0.145 -0.124 -0.085 0.120 0.212 

MOBY 0.112 0.091 0.088 0.081 0.088 

 
A value of at least 0.7 is normally needed for a correlation 

to be considered meaningful, and a positive correlation 
would be expected between the MERIS and in-situ data. 
The values for the different wavebands shown in Tab. 1 
(results are for participant a) include both positive and 
negative correlations, with the highest value being 0.468 
for the IDL code; for the platform it was 0.493, and for 
both it was the AAOT correlation at 560 nm that’s the 
highest. 
 
As shown in Fig. 4 (Left column), there were a number 
of outliers for especially the BOUSSOLE and MOBY 
match-ups that result in very poor correlation results 
across all wavebands. Therefore, an advanced method of 
filtering was applied: calculating the mean and standard 
deviation (stdev) of the remaining MERIS data, and then 
removing any points lower than the mean - stdev or 
higher than the mean + stdev; resulting in the plots shown 
in Fig. 4 (Right column). 
 

 

 

Figure 4. Multi-waveband correlation plots (the 
different symbols are the different wavebands) as the 

original results (Left) and after the removal of outliers 
(Right) for the AAOT (Top row), BOUSSOLE (Middle 

row) and MOBY (Bottom row) match-ups for 
participant a. 

 
For participant a, the advanced filtering has improved the 
AAOT and overall correlation statistics, but some of the 
waveband datasets have been degraded (might be 
correctly so). The approach was also tested for 
participant f (the MERIS processor) with the results, and 
also correlations, improving much more consistently. 
This was to be expected as the MERIS processor was 
designed for above-water application, and has been 



 

 

developed and validated using these in-situ datasets, 
while the SMAC processor (with its continental aerosol) 
is designed for above-land application. 
 
The rfinal correlation coefficient for participant a was 
0.135 from the platform and 0.065 for the IDL code 
before filtering; and 0.078 after filtering. For participant 
f it was 0.478 for the IDL code with filtering, and 0.267 
from the platform. 
 
4. CONCLUSIONS 

 
The results showed that, overall, a collaborative platform 
can be used to simplify the process of comparing 
different processors. Once the different participant’s 
software is uploaded and connected to the data packages, 
the processing runs automatically and collects 
information about the computing performance. 
Analysing the satellite versus in-situ matchups is quick to 
run and adjust. 
 
The results from the IDL versus platform correlation 
demonstrate that there can be issues in using 
automatically calculated statistics without intelligent 
filtering of the data to remove outliers. Applying the 
advanced filtering resulted in the MERIS processor being 
the best participant for this component of the 
performance assessment, which was not the case when 
the unfiltered data were used. Therefore, it’s important to 
continue to have human involvement in this step. 
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