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ABSTRACT 

The aim was to understand a future market for 
NovaSAR-S, with a particular focus on flood mapping, 
through developing a simple Synthetic Aperture Radar 
(SAR) simulator that can be used in advance of 
NovaSAR-S data becoming available.  
 
The return signal was determined from a combination of 
a terrain or elevation model, Envisat S-Band Radar 
Altimeter (RA)-2, Landsat and CORINE land cover 
information; allowing for a simulation of a SAR image 
that’s influenced by both the geometry and surface type. 
The test sites correspond to data from the 2014 AirSAR 
campaign, and validation is performed by using AirSAR 
together with Envisat Advanced (ASAR) and Advanced 
Land Observing Satellite "Daichi" (ALOS) Phased Array 
type L-Band Synthetic Aperture Radar (PALSAR) data. 
 
It’s envisaged that the resulting simulated data, and the 
simulator, will not only aid early understanding of 
NovaSAR-S, but will also aid the development of flood 
mapping applications. 
 
1. INTRODUCTION 

NovaSAR-S is a revolutionary concept of a low cost 
medium resolution SAR mission, being developed by 
Surrey Satellite Technology Ltd; in single polarisation 
mode the spatial resolution is 6 to 30 m, with swath 
widths ranging from 15 to 150 km, while alternative 
modes offer multi-polarisation at either a coarser spatial 
resolution or narrower swath width [1]. 
 
There is currently little literature on S-Band SAR 
imagery as the C Satellite of Environment and Disaster 
Monitoring and Forecasting Small Satellite Constellation 
(HJ-1-C) is the only active mission, launched 19 
November 2012 [2], with a previous mission being the 
Russian ALMAZ-1 that operated in 1991-1992. In 
contrast, there have been a number of X-, C- and L-Band 
missions. X-band is the shortest-length, highest 
frequency, of these missions with a need for the smallest 
antenna and so a focus on high resolution surface 
mapping; 1 m resolution in both directions for missions 
such as TerraSAR-X and Cosmo-SkyMed. The medium-
length (C-Band) microwaves have improved atmospheric 

transmission (i.e., penetration through clouds, dust, 
smoke, snow and rain), whilst the longer L-Band 
microwaves can also penetrate canopy cover and so 
provide information about the underlying land surface. S-
Band, lying between the C- and L-Bands, offers 
improved atmospheric transmission and vegetation 
penetration over C-Band, whilst requiring a smaller 
antenna and so having an improved spatial resolution 
compared to L-Band missions. Therefore a simulator 
shall not only aid an early understanding of NovaSAR-S 
data, but also provide foresight into some of the future 
applications S-Band data may have for water assessment 
and analysis during a flood event. 
 
The NovaSAR-S project, with a particular focus on flood 
mapping, was funded through a call for pathfinder 
projects from the UK’s Centre for Earth Observation 
Instrumentation and Space Technology (CEOI-ST). The 
principal objectives were to develop a simple simulator 
that could produce S-Band SAR datasets from a terrain 
model, supported by data mining of Envisat S-Band RA-
2 data alongside land surface characteristics.  
 
 
2. METHODOLOGY 

The initial research focused on the analysis of S-Band 
data from RA-2, to see whether it could provide insights 
into what a SAR system might be sensitive to.  
 
2.1. Analysis of Radar Altimeter Data 

Envisat’s RA-2, functioned mainly at a nominal Ku-Band 
frequency, but also had an S-Band frequency; this dual 
frequency operation was initially designed to aid in the 
correction of ionospheric delay. A report [3] looking into 
exploiting individual RA-2 echoes and S-Band data for 
ocean, coastal zone, land and ice/sea ice altimetry 
(project name RAIES) in 2007 found that the S-Band 
measurements over the ocean and in coastal zones 
appeared much noisier than Ku-Band and European 
Remote Sensing (ERS) measurements, when validated 
against Significant Wave Height buoy data. However, S-
Band sigma nought values were also found to be less 
affected by rain, more sensitive than Ku to ionospheric 
perturbation and less sensitive to the effects of 



 

 

atmospheric liquid water. It was found that S-Band also 
allowed observations of greater surface slopes (up to 3 as 
opposed to Ku-Band’s limit of 0.5) and it yielded a better 
penetration depth. Therefore, the use of the altimeter 
signal for understanding the interaction of S-Band with 
land surfaces was considered promising.  
 
Analysis was performed for the Crop and Peak District 
test sites corresponding to AirSAR flightlines (see Tab. 
1), which correspond to S- and X-Band data collected 
during airborne overflights during the 2014 AirSAR 
campaign (a UK partnership between Airbus Defence 
and Space, the Natural Environment Research Council 
and Satellite Applications Catapult). This involved 
extracting altimeter echo waveforms, from the RA-2 
Level 2 Sensor Geophysical Data Record (SGDR) 
products, and then comparing them to Normalized 
Difference Vegetation Index (NDVI) values, which 
depend on a high reflectance in the Near InfraRed by 
plant matter contrasting to the strong absorption by 
Chlorophyll-a in the red wavelengths that’s termed the 
‘red edge’ [4], calculated from Landsat imagery collected 
as concurrent as possible.  
 

Table 1. Crop and Peak District test site locations. 
Day / Run Location Near edge 

pixel 
Far edge 
pixel 

26/06/14 
Crop 2 

Worcester
shire 

1°52.233'W   
52°9.721'N 

1°47.017'W  
52°10.803'N 

26/06/14 
Crop 3 

Worcester
shire 

1°42.010'W  
52°11.492'N 

1°36.843'W  
52°12.065'N 

26/06/14 
Peak 

Peak 
District 

2°1.282'W  
53°38.067'N 

1°49.154'W  
53°21.890'N 

 
Fig. 1 shows an example for the Crop test site with the 
left plot showing the echo groups (numbered 1995, 1996 
and 1997) as small images; x-axis is echo waveform and 
y-axis is the set of echoes, with a rainbow colour palette 
indicating the echo magnitude. On the right a Landsat 
waveband is overlaid by the interpolated positions of the 
individual altimetry echoes, which is where the NDVI 
values were extracted from. 
 

 
Figure 1. Extraction of the RA-2 echo waveforms (left, 
shown by plotting the bursts on a Latitude/Longitude 
plot) overlaying the altimetry track on the Landsat 

image (right). 

Fig. 2 shows the RA calculated magnitude (height of the 
echo waveform peak) and peak position (gate number) 
plotted against the Landsat NDVI values, with the closest 
comparisons in time plotted in red. Although the results 
don’t appear to be random, there is not a simple 
relationship between NDVI and the two echo waveform 
metrics chosen. It was therefore not clear how these 
results could be used to build a look-up-table to provide 
radar return strength for different vegetated surfaces. 
Therefore, as the project was only a short term (6 month 
study) the focus shifted to still using NDVI, but with the 
S-Band radar backscatter values coming from peer-
reviewed papers. 
 

 
Figure 2. Comparison of the RA-2 echo waveform 

metrics to the corresponding Landsat NDVI values. 
 
2.2. Stage 1 Simulator 

The simulator was initially developed using the approach 
adopted in the Next ESA SAR Toolbox / Sentinel-1 
Toolbox (S1TBX) to encompass terrain variations [5]. As 
an outline, Envisat Doppler Orbitography and 
Radiopositioning Integrated by Satellite (DORIS) data is 
used to determine the satellite position with ASAR 
metadata providing the SAR geometry, and then the 
return signal is determined from a combination of a 
terrain or elevation model. Together these inputs allow 
for a simulation of a SAR image that is influenced by 
both the geometry, with the results being output in 
azimuth and slant range co-ordinates (slant range image). 
 
Stage 1 initially used a combination of the Shuttle Radar 
Topography Mission (SRTM) Digital Elevation Model 
(DEM), but there were gaps in the resulting simulation 
that were thought to be caused by the resolution of the 
input DEM data. Therefore, in a second version, the 
DEM data was swapped to a higher spatial resolution; 
Ordnance Survey (OS) DEM at 5 m spatial resolution.  
 
In Fig. 3, the OS DEM (Top) has a distinctive feature than 
can be seen within both the initial and adjusted 
simulation results. The simulation result looks reasonable 
(Bottom), but only the bottom left quarter of the DEM 
was in the output; the reasons for this are not currently 
fully understood as the mathematics is complex. 
 
As implementing the DEM derived simulation was 



 

 

taking time and there was difficultly with using the 
adjusted simulator outputs in the validation activity, 
because another step needs to be applied (resampling 
back to a map projected grid) in order to convert the data 
to a format that can be inserted into a GIS etc., it was 
decided to put this step on hold and work on the next step.  
 

 
 

 
Figure 3. Peak District test site produced from the (Top) 

OS DEM and (Bottom) simulation of the bottom left 
quadrant from the Pixalytics code. 

 
2.3. Stage 2 Simulator 

TPZ VEGA provided an ENVI SARScape DEM 
simulation output and then Pixalytics concentrated on 
adding a surface roughness element. In the first test the 
SARScape output was sigma nought, but this limited the 
usefulness and so the Local Incidence Angle (LIA) was 
exported instead and the processing shown in Fig. 4 
applied. 
 
A Landsat image was processed to create maps of the 
NDVI and Normalized Difference Water Index (NDWI) 
[6], where the first indicates the fraction of green 
vegetation and the second characterises the amount of 
water held in the vegetation. The date of the Landsat 
acquisition was chosen so that it was as close in time as 
possible to the target simulation date, but also cloud free 
over the test site.  
 
The classification of water was set to where the NDVI is 
less than or equal to 0.075, and then urban was values of 

between 0.075 and 0.3 with vegetation being NDVI 
values greater than 0.3. As the input Landsat image has 
been atmospherically corrected these values should be 
relatively stable, but this needs to be tested for a greater 
range of inputs. 
 

 
Figure 4. Processing flow diagram for assigning 

surface texture information. 
 
 
If the target is water then a sigma nought value of 
0.0102329 (-19.9 dB) is assigned. If the target is classed 
as urban then a version of the Muhleman backscatter 
model [5] (as used with NEST/S1TBX) is applied i.e. the 
surface is assumed to be rock like with backscattering 
being strongly dependent on the LIA. The code then 
applies random noise, which is scaled according to the 
estimated backscatter, and a maximum value of 40 dB is 
allowed. 
 
If the target is classed as vegetation the NDWI is used to 
estimate the vegetation water content, and then the 
backscatter that would result from this vegetation; this is 
currently based on a paper [7] that developed a semi-
empirical model for soya bean canopies at L and C bands. 
Also, the LIA is used to estimate the surface backscatter 
using a version of the Muhleman backscatter model and 
then the values are combined according the amount of 
vegetation cover; also estimated from the NDVI. After 
this, the random noise is applied and a maximum value 
of 5 dB is allowed. 
 
 
 



 

 

3. RESULTS 

 
3.1. Stage 2 Simulation Outputs 

Fig. 5 shows the inputs involved for the Peak District test 
site, and final result. The NDVI map (Top Left) shows 
that lower values are seen over the higher ground where 
the underlying terrain is more exposed, but with the 
lowest values occurring for water and urban areas. The 
surface type classification shows that the separation is 
working well, but it is difficult to separate water and 
urban in the current approach. The LIA (Bottom Left) 
shows the strong influence of the terrain variation while 
the final simulation has this reduced over lower / flatter 
ground where the influence of the surface type is causing 
variations in the backscatter. The current formulation has 
been setup so that the output is an HH polarized S-Band 
image, but further work is needed on the 
parameterisations involved. 
 

 
Figure 5. (Top Left) NDVI calculated from Landsat (low 

to high is blue > red > yellow > green), (Top Right) 
Surface type classification (black for water, grey for 
vegetation and white for urban), (Bottom Left) Local 

Incidence Angle and (Bottom Right) Simulated 
backscatter (sigma nought in dB to show range of 

values). 
 
3.2. Validation Approach 

Validation of the simulated S-Band imagery was 
conducted using the PALSAR (L), Envisat (C) and mean 
L and C band composite datasets, see Tab. 2, and by 
comparing the land cover classes.  
 
The mean composite image of L and C band SAR data 
was derived from PALSAR and Envisat imagery in an 

attempt to simulate similar wavelength (λ) / dB values to 
S-Band SAR imagery i.e. ~10cm λ; taken after 
consideration of the scattering properties [8, 9 and 10]. 
The penetration capabilities of the datasets vary: L-Band 
being able to significantly penetrate forest canopy while 
C-Band only partially penetrating the forest canopy. 
 

Table 2. Validation datasets. 
Peak 

Satellite/Sensor Acquisition 
Date 

Acquisition 
Time 

SAR band 

ALOS/PALSAR 16/06/2010 22:22 HH L-Band 
(23cm) 

Envisat/ASAR 17/06/2010 21:39 HH C-
Band (6cm) 

Mean L and C 
Band 

N/A N/A HH 
(L+C)/2 
(~14cm) 

AirSAR 26/06/2014 N/A HH S-Band 
(~9cm) 

Crop 
Satellite/Sensor Acquisition 

Date 
Acquisition 

Time 
SAR band 

ALOS/PALSAR 15/08/2009 22:25 HH L-Band 
(23cm) 

Envisat/ASAR 06/08/2009 21:39 HH C-
Band (6cm) 

Mean L and C 
Band 

N/A N/A HH 
(L+C)/2 
(~14cm) 

AirSAR 26/06/2014 N/A HH S-Band 
(9cm) 

 
Localised comparisons between the S-Band simulated 
datasets and the SAR datasets were conducted on a set of 
sub-areas defined to represent a variety of land cover 
types as determined from the CORINE land cover 
classification [11]: 
 
1   - Continuous Urban Fabric 
2   - Discontinuous Urban Fabric 
3   - Industrial and Commercial 
6   - Airports 
11 - Sport and Leisure  
12 - Non-Irrigated Arable Land 
18 - Pastures 
23 - Broad leaf Forest 
24 - Coniferous Forest 
26 - Natural Grassland 
27 - Moors and Heathland 
29 - Sclerophyllous Vegetation 
36 - Peat Bog 
41 - Water Bodies 
 
Non-urban land cover classes were analysed using 20-30 
Vectorised Regions of Interest (ROIs) to obtain precise 
averages of dB values, whereas urban land cover classes 
were analysed with >50 ROIs due to the inconsistent 



 

 

nature of urban environments and as a consequence 
erratic dB values. The mean pixel values from each ROI, 
in a land cover class, were collated to obtain a 
representative mean pixel value of the individual land 
cover classes across the two test sites (Peak and Crop).  
 
RGB basemap imagery (derived from the satellite data 
within Google EarthTM displayed using ArcGIS) was 
included within the qualitative validation phase, see Fig. 
6, allowing for easier visual interpretations between SAR 
images. In addition, Fig. 6 shows the Simulated S-Band 
dataset alongside the RGB imagery and Mean L and C 
band validation datasets over the second test site ‘Crop’. 
A greater diversity of visible land cover classes is visible 
within the ‘Mean L and C Band’ than within the 
simulated S-Band image. However, within the simulated 
S-Band image there are visible differences in the 
backscatter strength between urban and other land cover 
classes.   
 

 
Figure 6. RGB basemap imagery (Top Left) alongside 
the Simulated S-Band imagery (Top Right) and Mean L 
and C Band imagery (Bottom Right) plus a plot of the 
scattering values for the different CORINE land cover 

classes. 
 
Between validation datasets it is observed that there are 
strong similarities for the simulated backscatter values 
within classes of intensively managed grassland e.g. 
‘Sports and Leisure’, ‘Airports’ and ‘Pastures’ and other 
vegetation classes such as ‘Non-irrigated Arable Land’ 
and ‘Broad leaf forest’.  This may be due to the 
simulation methodology being based on research on leaf 
dominant vegetation: soya bean. 
 
A qualitative validation using S-Band AirSAR imagery 
was also conducted for the two test sites, but quantitative 

validation could not be achieved due to the loss of 
calibrated dB values in the processed AirSAR data. 
 
4. CONCLUSION 

Validation of the simulated S-Band SAR data with 
historical/current SAR data over the same locations was 
undertaken to ensure that: 

• Geolocation is nominal  
• Features in the simulated SAR product 

appear as expected 
 
The project met these requirements i.e. the generation of 
a simple SAR simulated dataset with accurate geocoding 
when compared to an independent SAR validation 
dataset. In addition, the quantitative comparison of the 
simulated S-Band against the C- and L-Band SAR and 
mean of C- and L-Band SAR against a number of land 
cover types as defined by CORINE data showed that the 
simulated S-Band is different to both but more similar to 
L than C-Band.  
 
The qualitative comparison made between simulated S-
Band and AirSAR S-Band aerial data showed that the 
simulated S-Band did replicate the backscatter 
appearance of AirSAR (although at lower definition 
since the AirSAR source data is of much higher 
resolution). The performance varied as might be expected 
given that the backscatter variance was based on the level 
of NDVI/NDWI indices and not taking into account 
structural information of the canopy type (cf. inability to 
distinguish forest from unmanaged vegetation).  
Nevertheless it is felt the simulator as it stands is useful 
as learning tool and its further use with comparison to 
further datasets would allow its further refinement.  As 
was reported, the simulator performed well on 
unmanaged land where its core of being built on NDVI 
lends itself well to leafy vegetation. It also simulates 
urban against natural again reflecting the decision tree 
division in the simulation model.  
 
4.1. Future Steps and Roadmap 

There are a number of areas for further development, 
which include:  
 
 Envisat RA-2 data: Some interesting results were 

achieved, and it would be useful to return to this 
component of the study and extract further signals 
based on the ROIs used for validation. From 
discussions at the ESA Living Planet Symposium 
2016 (Blarel pers. comm. and poster), backscatter 
maps derived from the RA-2 S-band data are 
strongly correlated with soil moisture in addition to 
surface roughness and land cover. 
 

 DEM simulation: Return to this code and implement 
the additional step so that the output can be 



 

 

converted to geographical co-ordinates, and then the 
roughness applied.  

 
 Use of Landsat within the simulation: consider 

including Sentinel-2 so that a higher spatial 
resolution classification can be produced. 

 
 Separation of water and urban land cover types: 

Include an additional step to the classification e.g. a 
requirement for a low value in the Mid InfraRed to 
make sure water and urban land cover types are 
correctly separated. 

 
 Vegetation surface type: The current approach is 

based on a single paper, although significant 
background reading has been undertaken. This is 
because there is limited research published where 
both L- and C- band SAR data have been considered, 
and hence we can estimate the S-Band response; 
there are even fewer papers that discuss S-Band 
itself. By further analysing existing L- and C- band 
scenes taken in close time proximity to each other, 
further knowledge can be gained and so built into the 
vegetation modelling. 

 
 Urban surface type: A better approach is needed for 

more accurate determination of the backscatter in 
urban areas (e.g., ray tracing within a 3D model) as 
the current approach will be underestimating the 
return signal because a significant proportion of the 
backscatter will be coming from double bounces. 
This could be implemented using the Environment 
Agency’s Lidar data that is available as a Digital 
Surface Model (DSM), rather than elevation model 
(DEM), except that the data will not exist for higher 
ground as it was collected for flood mapping 
purposes. 

 
5. REFERENCES 

1. Davies, P., Whittaker, P., Bird, R., Gomes, L., Stern, 
B., Sweeting, M., Cohen, M & Hall, D. (2012). 
NovaSAR – Bringing Radar Capability to the 
Disaster Monitoring Constellation. Proceedings of 
the 26th Annual AIAA/USU Conference on Small 
Satellites, Logan, Utah, USA, August 13-16, 2012. 
Online at 
http://digitalcommons.usu.edu/cgi/viewcontent.cgi
?article=1020&context=smallsat (as of 11 May 
2016). 

2. Liang, L., Wei, Z., Xiaoguang, J., Xianbin, L., 
Hongyuan, H. & Xuehua, Z. (2016). Water Body 
Extraction Research Based on S Band SAR Satellite 
of HJ-1-C. International Journal of Advanced 
Remote Sensing and GIS, 5(2), 1514-1523. 

3. Challenor, P.G. et al. (2004). Exploitation of the 
Envisat radar altimeter individual echoes and S-

Band data for ocean, coastal zone, land and ice/sea 
ice altimetry (RAIES), Task 6: Scientific 
applications of S-Band data. Southampton, UK, 
Southampton Oceanography Centre, pp77. 

4. Curran, P.J. (1989). Remote sensing of foliar 
chemistry. Remote Sensing of Environment, 29, 
271-278. 

5. Liu, H., Zhao, Z. & Jezek, K.C. (2004). Correction of 
Positional Errors and Geometric Distortions in 
Topographic Maps and DEMs Using a Rigorous 
SAR Simulation Technique. Photogrammetric 
Engineering & Remote Sensing, 70(9), 1031–1042. 

6. Gao, B-C. (1996). NDWI - A Normalized Difference 
Water Index for remote sensing of vegetation liquid 
water from space. Remote Sens Environ, 58, 257-
266. 

7. De Roo, R.D., Du, Y., Ulaby, F.T. & Dobson, M.C. 
(2001). A semi-empirical backscattering model at 
L-Band and C-Band for a soybean canopy with soil 
moisture inversion. Geoscience and Remote 
Sensing. IEEE Transactions, 39(4), 864-872. 

8. Chu, H. & Ge, L. (2010). Land Cover Classification 
Using Combinations of L and C Band SAR and 
Optical Satellite Images. Proceedings of Asian 
Association on Remote Sensing (ACRS), Hanoi. 
pp1-5. 

9. Haarpainter, J., Davids, C., Hindberg, H., Zahabu, E. 
& Malimbwi, R.E. (2015). Forest and Forest change 
Mapping with C and L Band SAR in Liwale, 
Tanzania. The International Archives of 
Photogrammetry, Remote Sensing and Spatial 
Information Sciences, 40(7), 391-xxx. 

10. Li, G., Lu, D., Moran, E., Dutra, L. & Batistella, M. 
(2012). A comparative analysis of ALOS PALSAR 
L-Band and RADARSAT-2 C-Band for land cover 
classification in a tropical moist region. ISPRS 
Journal of Photogrammetry and Remote Sensing, 
70, 26-38. 

11. Copernicus. (2016). CORINE land cover. Online at 
http://land.copernicus.eu/pan-european/corine-
land-cover (as of 3 May 2016). 

6. ACKNOWLEDGEMENTS 

The Envisat ASAR, DORIS and RA-2 data is courtesy of 
ESA, with the Landsat data courtesy of the USGS/NASA 
and the ALOS PALSAR data from JAXA. The AirSAR 
campaign data was provide by the Satellite Applications 
Catapult and the CORINE land cover data came from 
Copernicus Land Service.  
 



 

 

In addition, the NEST and S1TBX packages have been 
developed under funding from ESA and the OS DEM 
data is provided through an OS license: © Crown 
copyright and database rights (2015) OS (100057045). 
 
The project activities were funded by the CEOI-ST 
(where Telespazio VEGA UK were the prime), with 
funding coming from the UK Space Agency. 

 


