Ocean Colour Cubes

August 2009 Monthly Chlorophyll-a Composite; data courtesy of the ESA Ocean Colour Climate Change Initiative project

August 2009 Monthly Chlorophyll-a Composite; data courtesy of the ESA Ocean Colour Climate Change Initiative project

It’s an exciting time to be in ocean colour! A couple of weeks ago we highlighted the new US partnership using ocean colour as an early warning system for harmful freshwater algae blooms, and last week a new ocean colour CubeSat development was announced.

Ocean colour is something very close to our heart; it was the basis of Sam’s PhD and a field of research she is highly active in today. When Sam began studying her PhD, Coastal Zone Color Scanner (CZCS) was the main source of satellite ocean colour data, until it was superseded by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) that became the focus of her role at Plymouth Marine Laboratory.

Currently, there are a number ocean colour instruments in orbit:

  • NASA’s twin MODIS instruments on the Terra and Aqua satellites
  • NOAA’s Visible Infrared Imager Radiometer Suite (VIIRS)
  • China’s Medium Resolution Spectral Imager (MERSI), Chinese Ocean Colour and Temperature Scanner (COCTS) and Coastal Zone Imager (CZI) onboard several satellites
  • South Korea’s Geostationary Ocean Color Imager (GOCI)
  • India’s Ocean Colour Monitor on-board Oceansat-2

Despite having these instruments in orbit, there is very limited global ocean colour data available for research applications. This is because the Chinese data is not easily accessible outside China, Oceansat-2 data isn’t of sufficient quality for climate research and GOCI is a geostationary satellite so the data is only for a limited geographical area focussed on South Korea. With MODIS, the Terra satellite has limited ocean colour applications due to issues with its mirror and hence calibration; and recently the calibration on Aqua has also become unstable due to its age. Therefore, the ocean colour community is just left with VIIRS; and the data from this instrument has only been recently proved.

With limited good quality ocean colour data, there is significant concern over the potential loss of continuity in this valuable dataset. The next planned instrument to provide a global dataset will be OLCI onboard ESA’s Sentinel 3A, due to be launched in November 2015; with everyone having their fingers crossed that MODIS will hang on until then.

Launching a satellite takes time and money, and satellites carrying ocean colour sensors have generally been big, for example, Sentinel 3A weighs 1250 kg and MODIS 228.7 kg. This is why the project was announced last week to build two Ocean Colour CubeSats is so exciting; they are planned to weigh only 4 kg which reduces both the expense and the launch lead time.

The project, called SOCON (Sustained Ocean Observation from Nanosatellites), will see Clyde Space, from Glasgow in the UK, will build an initial two prototype SeaHawk CubeSats with HawkEye Ocean Colour Sensors, with a ground resolution of between 75 m and 150 m per pixel to be launched in early 2017. The project consortium includes the University of North Carolina, NASA’s Goddard Space Flight Centre, Hawk Institute for Space Sciences and Cloudland Instruments. The eventual aim is to have constellations of CubeSats providing a global view of both ocean and inland waters.

There are a number of other planned ocean colour satellite launches in the next ten years including following on missions such as Oceansat-3, two missions from China, GOCI 2, and a second VIIRS mission.

With new missions, new data applications and miniaturised technology, we could be entering a purple patch for ocean colour data – although purple in ocean colour usually represents a Chlorophyll-a concentration of around 0.01 mg/m3 on the standard SeaWiFS colour palette as shown on the image at the top of the page.

We’re truly excited and looking forward to research, products and services this golden age may offer.

Goodbye HICO, Hello PACE – Ocean Colour’s Satellite Symmetry

HICO™ Data, image of Hong Kong from the Oregon State University HICO Sample Image Gallery, provided by the Naval Research Laboratory

HICO™ Data, image of Hong Kong from the Oregon State University HICO Sample Image Gallery, provided by the Naval Research Laboratory

Ocean colour is the acorn from which Pixalytics eventually grew, and so we were delighted to see last week’s NASA announcement that one of their next generation ocean colour satellites is now more secure with a scheduled launched for 2022.

Unsurprisingly the term ocean colour refers to the study of the colour of the ocean, although in reality it’s a name that includes a suite of different products, with the central one for the open oceans being the concentration of phytoplankton. Ocean colour is determined by the how much of the sun’s energy the ocean scatters and absorbs, which in turn is dependent on the water itself alongside substances within the water that include phytoplankton and suspended sediments together with dissolves substances and chemicals. Phytoplankton can be used a barometer of the health of the oceans; in that phytoplankton are found where nutrient levels are high and oceans with low nutrients have little phytoplankton. Sam’s PhD involved the measurement of suspended sediment coming out of the Humber estuary back in 1995, and it’s remained an active field of her research for the last 20 years.

Satellite ocean colour remote sensing began with the launch of NASA’s Coastal Zone Colour Scanner (CZCS) on the 24th October 1978. It had six spectral bands, four of which were devoted to ocean colour, and a spatial resolution of around 800m. Despite only having an anticipated lifespan of one year, it operated until the 22nd June 1986 and has been used as a key dataset ever since. Sadly, CZCS’s demise marked the start of a decade gap in NASA’s ocean colour data archive.

Although there were some intermediate ocean colour missions, it was the launch of the Sea-viewing Wide Field-of-view (SeaWiFS) satellite that brought the next significant archive of ocean colour data. SeaWiFS had 8 spectral bands optimized for ocean colour and operated at a 1 km spatial resolution. One of Sam’s first jobs was developing a SeaWiFS data processor, and the satellite collected data until the end of its mission in December 2010.

Currently, global ocean colour data primarily comes from either NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) on-board the twin Aqua and Terra satellites, or the Visible Infrared Imaging Radiometer Suite (VIIRS) which is on a joint NOAA / NASA satellite called Suomi NPP. MODIS has 36 spectral bands and spatial resolution ranging from 250 to 1000 m; whilst VIIRS has twenty two spectral bands and a resolution of 375 to 750 m.

Until recently, there was also the ONR / NRL / NASA Hyperspectral Imager for the Coastal Ocean (HICO) mission on-board the International Space Station. It collected selected coastal region data with a spectral resolution range of 380 to 960nm and 90m spatial resolution. It was designed to collect only one scene per orbit and has acquired over 10,000 such scenes since its launch. However, unfortunately it suffered during a solar storm in September 2014. Its retirement was officially announced a few days ago with the confirmation that it wasn’t possible to repair the damage.

In the same week we wave goodbye to HICO, NASA announced the 2022 launch of the Pre-Aerosol and ocean Ecosystem (PACE) mission in a form of ocean colour symmetry. PACE is part of the next generation of ocean colour satellites, and it’s intended to have an ocean ecosystem spectrometer/radiometer called built by NASA’s Goddard Space Flight Centre and will measure spectral wavebands from ultraviolet to near infrared. It will also have an aerosol/cloud polarimeter to help improve our understanding of the flow, and role, of aerosols in the environment.

PACE will be preceded by several other missions with an ocean colour focus including the European Sentinel-3 mission within the next year; it will have an Ocean and Land Colour Instrument with 21 spectral bands and 300 m spatial resolution, and will be building on Envisat’s Medium Resolution Imaging Spectrometer (MERIS) instrument. Sentinel-3 will also carry a Sea and Land Surface Temperature Radiometer and a polarimeter for mapping aerosols and clouds. It should help to significantly improve the quality of the ocean colour data by supporting the improvement of atmospheric correction.

Knowledge the global phytoplankton biomass is critical to understanding the health of the oceans, which in turn impacts on the planet’s carbon cycle and in turn affects the evolution of our planet’s climate. A continuous ocean colour time series data is critical to this, and so we are already looking forward to the data from Sentinel-3 and PACE.