Blue Phase at Wavelength 2018

Blue John Cavern

Last week I attended the 2018 Wavelength Conference in Sheffield. This is an annual gathering for the Remote Sensing and Photogrammetry Society (RSPSoc) and is geared towards PhD students and early career scientists. The conference aim is to provide a welcoming and constructive atmosphere to present research and progress towards PhD’s, coupled with a vibrant social programme.

This was my first experience of a remote sensing conference and the cosy nature of the common room where it was held alongside the lack of pressure of a larger event lent itself well to its ambition.

The topics covered by the research varied greatly, each with a focus on how to apply remote sensing and photogrammetry techniques in novel ways to better understand the world around us. These ranged from tracking whales to monitoring rice fields and developing systems to track small scale landslides.

One key technology which was popular among the presentations was the application of machine learning, the training of an artificial intelligence (AI) to classify images for a variety of purposes. Given it is something I’m becoming involved in at Pixalytics, every mention of AI attracted my attention. One presentation which stuck out for me was its application to track the effects of crude oil pollution in the Niger delta region. Harnessing remote sensing data and utilising the power of machine learning to sift through hundreds or even thousands of images, classify details and pick out objects of interest to monitor environmental damage is a novel approach. It provides a direct link from the science to a serious real-world issue. Whilst a localised case, the techniques demonstrated have the potential to better inform our responses to these issues which in turn will help people being affected by these disasters.

This application of science combined with the potential to one day help people resonated with me greatly. It reminded me of the work I am currently doing on the Drought and Flood Mitigation Service project which will aid the lives of Ugandan farmers.

Two keynotes were delivered during the conference, one by Dr. Alistair Graham, from Geoger Ltd, and one from the Chairman of RSPSoc Dr. Richard Armitage. Dr. Graham’s keynote was fascinating as he delivered his experiences working in a multitude of different environments from corporate to SME’s in industry to post doc positions in academia. He explained the nuances of working in each area and the possible paths for career progression open to PhD students and other early career scientists. I fall into the latter category, but the perspective he provided convinced me to keep my options open for the future. At a time when industry and academia is changing rapidly anything could happen.

Dr. Armitage’s keynote was on responsive remote sensing and his talk focused on how to use the right remote sensing data at the right time and for the right area. For the problems we come across, identifying the correct approach to take with remote sensing data is crucial.

For example, two important factors to consider for any problem are spatial resolution and data type. Some features require 5m to be visible, whereas for others the 30m resolution can show what is required. Further to consider is what type of data is best suited for the problem, optical data has its advantages but infra-red can reveal insights that optical data cannot. Having come across these points before the keynote, it served as a good reinforcement on the topic.

Blue John in the rock.

The highlight of the conference for me was the tour around Blue John cavern. Tucked away in the Peak District, surrounded by stunning views of the hills, the cavern is home to the famous Blue John stone. The tour guide was a miner who had worked in the cavern for 15 years and his knowledge on the tour was remarkable, making every stop ever more interesting.

Whilst a lot of walking and climbing was done, the colourful Blue John that spotted the walls of the cavern, together with the extremely high ceilings carved out by long gone rivers made for amazing views. If you don’t mind cramped spaces and traversing up and down a large mine, then Blue John cavern is a fantastic place to go!

For my first conference experience Wavelength 2018 was a fantastic introduction. The welcoming atmosphere, getting to see the diverse nature of remote sensing and photogrammetry research going on right now and the insightful keynotes will stick with me for a long time. I highly recommend any early career scientist or PhD student to attend the next incarnation of this conference.

Chris Doyle
Junior Software Developer
Pixalytics Ltd

Flywheels Spinning At Data.Space

The Data.Space Conference took place last week in Glasgow. It was an interesting, thought-provoking and useful event, which felt very friendly and was distinguished by the seniority of the attendees with a lot of companies were represented by CEO’s, MD’s and owners/founders.

The event began with the session ‘Listening to our Earth’ with presentations from Spire, Hawkeye360, KSAT, CGI UK and Promos Ventures. We were particularly caught by the idea from Peter Platzer of Spire, who talked about the flywheel and how you need to build momentum within companies to move from good to great, in particular focussing on making a tenfold improvement on what currently exists.

Sam gave her presentation in the second session on ‘Looking at our Earth’, which can be accessed here. We found it encouraging that some of the key messages that we picked out were echoed by other presenters, both in this session and others. The common themes highlighted included:

  • Stop focussing on imagery, and focus more on customer needs.
  • Demonstrate the problem that the Earth Observation (EO) data solves and the value it adds.
  • The fact that the data comes from space isn’t critical to the customer.

We had a number of people come up after Samantha’s presentation to say how much they enjoyed it, which is always good! Interestingly, hers was not the only presentation that Pixalytics got mentioned in. Our blog on ‘Earth Observation Satellites in Space’ was name checked by Will Cadell, CEO of Sparkgeo, in the session after lunch. A highlight of which was Grega Milcinski, CEO Sinergise, demonstrating the possibilities of the Sentinel Hub and how they are making a lot of their code available on GitHub to enable others to build on it.

The second day began with a thought provoking session on using EO to create a better planet. Temporal resolution, file sizes, lack of internet facilities and the need to have quick simple maps was highlighted as a challenge to using EO data in disaster relief scenarios. Access to datasets was highlighted by Tony Long, Global Fishing Watch, as a barrier to providing a planet wide view of what is happening. It was also great to listen to Steve Lee from Astrosat talk about their experiences of two UK Space Agency International Partnership Programme projects, and pick up some pointers for the ones we’re involved in.

As a micro company, the second session of this day was fascinating to us giving an overview of what investors and venture capital people look for in companies. It was heartening to hear that data analytics is seen as having a lot of value, but less positive was that the vast majority of funding in this area is going into the US. It was also noted that these funders aren’t interested in funding research, they want to get in on the ‘Last Mile’ of a product or service – making us wonder whether we would ever be attractive to investors!

Pixalytics Stand at Data.Space

Throughout the conference we manned our small table, surrounded by companies with the obligatory pop-up banners. We stood alone bare backed as we flew to Glasgow on Easyjet and a pop-up banner would have been an extra bag! We had lots of interesting conversations over potential collaborations, new customers, product ideas and solutions to challenges; and we even managed to sell a couple of copies of our book! We were able to demonstrate our portal, and we got some really good feedback. We’ll be looking for more feedback and some beta testers over the coming weeks – please get in touch in you’re interested! Finally, we‘d also like to commend the fantastic food offering at the event, which had lots of lovely Scottish notes.

Overall, this was a great event and we’ll certainly be looking to go back next year!

Five Learning Points For Developing An Earth Observation Product Portal

Landsat mosaic image of the Isle of Wight. Data courtesy of NASA.

This week we’re gently unveiling our Pixalytics Portal at the DATA.SPACE 2018 Conference taking place in Glasgow.

We’ve not attended DATA.SPACE before, but great feedback from some of the last years attendees convinced us to come. It’s an international conference focusing on the commercial opportunities available through the exploitation of space-enabled data and so it seemed the perfect place to demonstrate our new development.

Regular readers will know we’ve had the product portal idea for a little while, but it often went to the back of the work queue when compared to existing work, bid preparation and our other developments. Hence, six months ago we pinpointed the DATA.SPACE as our unveiling event!

On the 1st and 2nd February at Technology & Innovation Centre in Glasgow we have a stand where we’re inviting everyone to come up and have a look at the portal and give us feedback on the idea, principles and the look and feel of the portal.

We’re demonstrating five products, and we’re looking to expand this, these are:

  • Landscape Maps of the UK
  • Water Extent Mapping
  • Flood Water Mapping
  • Coastal Airborne Lidar Survey Planning Datasets
  • Open Ocean Water Quality Parameters

We’re not just attending, we’re exhibiting and Sam’s presenting!! So we’re going to have the full triumvirate conference experience. Sam is presenting in the first day’s second session titled ‘Looking at our Earth’ which starts at 11.10am. Her presentation is called ‘Growing Earth Observation By Being More Friendly.’

Developing this portal to its current state has been a really interesting journey. When we began we didn’t know why some of the larger companies haven’t cracked this already! Six months later and we’ve started to understand the challenges!

We thought it might be helpful to reveal are five top learning points for any other SME’s in our industry considering developing a portal. They are:

  1. Challenging the Digital e-commerce Process: Standard digital e-commerce systems allow customers to purchase a product and then download it immediately. The need to have an additional step of a few minutes, or even hours, to undertake data processing complicates things. It means that simple off-the-shelf plug-ins won’t work.
  2. Don’t Go for Perfection: Building a perfect portal will take time. We’ve adopted the approach of Eric Ries, author of The Startup Way, who advocates building a system for ten purchases. We’re perhaps a bit beyond that, but certainly we know that this will only be the first iteration of our portal.
  3. Linking The Moving Parts: Our portal has a web-front end, a cloud processing backend and the need to download requested data. We’ve tried to limit the amount of data and processing needed, but we can’t eliminate it entirely. This means there are a lot of moving parts to get right, and a lot of error capturing to be done!
  4. Legal & Tax issues: Sorting out the products is only one part of the process, don’t forget to do the legal and tax side as that has implications on your approach. We have learnt a lot about the specific requirements of digital services in e-commerce!
  5. Have a deadline: We chose to exhibit at DATA.SPACE to give us a deadline. We knew if we didn’t have a hard deadline we’d still be debating the products to include, and have developed none of them! The deadline has moved us really close to having a portal.

If you’re at DATA.SPACE this week, please come up and say hello. If you’ve got a few minutes to spare we’d love to get you feedback on our portal.

First Light Images

Mosaic image of The Netherlands created using three Sentinel-1 scans in March 2015.
Data Courtesy of Copernicus Sentinel data (2015)/ESA.

Two of the satellites launched on 12th January by the Indian Space Research Organization (ISRO) have released their first images. We wrote about the launch two weeks ago, and wanted to follow up on their initial outputs.

The first is the exciting ICEYE-X1, which is both the world’s first synthetic-aperture radar (SAR) microsatellite and Finland’s first commercial satellite. We currently use Sentinel-1 SAR imagery for some of Pixalytics flooding and water extent mapping products and so are really interested to see what this satellite produces.

One of the key advantages of radar satellites over optical ones is that they can capture images both during day and night, and are not hampered by the presence of clouds.  However, using a different part of the electromagnetic spectrum to optical satellites means that although it is black and white image it’s sometimes easier to distinguish objects within it.

Zoomed in portion of Netherlands mosaic image created using three Sentinel-1 scans in March 2015.
Data Courtesy of Copernicus Sentinel data (2015)/ESA.

For example, the image to the left is a zoomed in portion of Sentinel-1 mosaic of the Netherlands acquired in March 2015 where you can clearly see couple of off-shore windfarms.

Sentinel-1 is a twin satellite constellation and uses a C-Band SAR on board two identical satellites. Over land it captures data in an Interferometric Wide swath mode, which means it takes three scans and then combines them into a single image. Each scan has a width of 250 km and a spatial resolution of 5 m x 20 m, with a six day repeat cycle for an area of land.

In comparison, ICEYE-X1 produced its first image with a spatial resolution of 10 m, and it’s hoped to reduce this down to 3 m. It issued its first image on Monday 15th January, three days after launch, showing part of Alaska, including the Noatak National Preserve, with a ground coverage of approximately 80 km by 40 km. The image can be seen here.

ICEYE-X1 weighs in at under a 100 kg, which is less than a twentieth of Sentinel-1 which weighed in at 2 300kg. This size reduction produces a high reduction in the cost too, with estimates suggesting it only cost ICEYE around a hundredth of the €270 million price of the second Sentinel-1 satellite.

By 2020 ICEYE is hoping to establish a global imaging constellation of six SAT microsatellites that will be able to acquire multiple images of the same location on Earth each day. After this, the company has ambitions of launching 18 SAR-enabled microsatellites to bring reliable high temporal-resolution images which would enable every point on the Earth to be captured eight times a day.

Cartosat-2F also sent its first image on the 15th January. The image, which can be found here, is of the city of Indore, in the Indian state of Madhya Pradesh. The Holkar Stadium is tagged in the centre, a venue which has previously hosted test Cricket. The satellite carries a high resolution multi-spectral imager with 1 m spatial resolution and a swath width of 10 km.

It is the seventh satellite in the Cartosat series which began in 2007, the others are:

  • Cartosat 2 launched on 10th January 2007
  • Cartosat 2A launched on 28th April 2008
  • Cartosat 2B launched on 12th July 2010
  • Cartosat 2C launched on 22nd June 2016
  • Cartosat 2D launched on 15th February 2017
  • Cartosat 2E launched on 23rd June 2017

These two satellites are just at the start of their journey, and it will be interesting to see what amazing images they capture in the future.

Four Key Earth Observation Trends For 2018

Blue Marble image of the Earth taken by the crew of Apollo 17 on Dec. 7 1972.
Image Credit: NASA

This week we’re looking at this year’s key trends in Earth Observation (EO) that you need to know.

Rise of the Data Buckets!
EO data is big! Anyone who has tried to process EO data knows the issues of downloading and storing large files, and as more and more data becomes available these challenges will grow. Amazon recognised this issue and set up Amazon Web Services which automatically downloads all freely available data such as Copernicus and Landsat, offering people who want to process data a platform where they don’t have to download the data – for a price!

The European Commission also picked up on this and awarded four commercial contracts at the end of last year to establish Copernicus Data and Information Access Services (DIAS) which will offer scalable processing platforms for the development of value-added products and services.

The four successful DIAS consortiums are led by Serco Europe, Creotech Instruments, ATOS Integration & Airbus Defence and Space respectively, and a fifth DIAS is planned to be established by EUMETSAT. It’s hoped this will kick-start the greater use and exploitation of Copernicus data.

Continued Growth of Data
There are some exciting EO launches planned this year continuing to increase the amount of data available. Earlier this week China launched the last two satellites of the high resolution optical SuperView constellation. In addition, some of the key larger satellites going into orbit this year include:

  • ESA’s Sentinel-3B and its Aeolus wind mission.
  • NASA’s Gravity Recovery and Climate Experiment Follow-on (GRACE-FO) and the Ice, Cloud and land Elevation Satellite (ICESat-2).
  • Japan’s Advanced Satellite with New system Architecture for Observation (ASNARO 2) which is x-band SAR radar satellite with a 1 m ground resolution.
  • NOAA’s GOES-S is the second of four upgraded weather observatories.

In addition, as we described last week, cubesats will continue to have regular launches. We are still a long way from the high watershed of EO data!

SaaS Will Become The Norm
The rise of the data buckets will encourage the Software-as-a-service (SaaS) approach to EO to become the norm. Companies will develop products and services and offer them to customers on a platform via the internet, rather than the historic bespoke application approach. For companies this will be a more effective way of using their resources and will allow them to better leverage products and services. For the customers, it will enable them greater use EO and geospatial data without the need for expert knowledge.

Pixalytics is due to launch its own Product Portal at the Data.Space 2018 conference at the end of this month.

Artificial Intelligence (AI)
AI is becoming more and more important to EO. Part of this is the natural development of AI, however certain EO tasks are far more suited to AI. For example, change detection, identification of new artefacts in imagery, etc. These aspects have a base image and looking for differences, computers can do this much quicker than any human researcher. Although, it’s also true that humans can see artefacts much more easily than you can program a computer to identify them. Therefore, these AI applications are strongly dependent on training datasets created by humans.

However, things are now moving beyond these simple AI tasks and it’s becoming an integral part of EO products and services. For example, last year Microsoft launched their AI for Earth programme, support by a $50 m investment, which will deploy their cloud computing, AI and other technology to researchers around the world to help develop new solutions for the agriculture, biodiversity, climate change, and water challenges on the planet.

Summary
These are a snapshot of our view of the key trends. What do you think? Have we missed anything? Let us know.

Earth Observation’s Flying Start to 2018

Simulated NovaSAR-S data.

Earth Observation (EO) is taking off again in 2018 with a scheduled launch of 31 satellites next Friday, 12th January, from a single rocket by the Indian Space Research Organization (ISRO). The launch will be on the Polar Satellite Launch Vehicle (PSLV-40) from the Satish Dhawan Space Centre in Sriharikota, India. ISRO has history of multiple launches, setting the world record in February 2017 with 104 satellites in one go.

The main payload next week will be Cartosat-2F, also known as Cartosat-2ER. It is the next satellite in a cartographic constellation which focuses on land observation. It carries two instruments, a high resolution multi-spectral imager and a panchromatic camera. It’s data is intended to be used in urban and rural applications, coastal land use, regulation and utility management.

At Pixalytics we’re particularly excited about the Carbonite-2 cubesat built by Surrey Satellite Technology Ltd (SSTL) which is on this launch. .

Carbonite-2 is a prototype mission to demonstrate the ability to acquire colour video images from space. It has been developed by Earth-i and SSTL, and carries an imaging system capable of delivering images with a spatial resolution of 1 m and colour video clips with a swath width of 5 km. Earth-i have already ordered five satellites from SSTL, as the first element of a constellation that will provide colour video and still imagery for the globe enabling the moving objects such as cars, ships or aircraft to be filmed. These satellites are planned for launch in 2019.

However, this isn’t the only cubesat with an EO interest on next week’s launch. In addition, there are:

  • KAUSAT 5 (Korea Aviation University Satellite) will observe the Earth using an infrared camera and measure the amount of radiation from its Low Earth Orbit (LEO).
  • Parikshit is a student satellite project from the Manipal Institute of Technology in India that carries a thermal infrared camera, using 7.5-13.5 µm wavelengths, and will be used to monitor urban heat islands, sea surface temperature and the thermal distribution of clouds around the Indian subcontinent.
  • Landmapper-BC3, a commercial satellite from Astro Digital in the USA to provide multispectral imagery at 22 m spatial resolution with a swath width of 220 km
  • ICEYE-X1 is a SAR microsatellite from the Finnish company ICEYE which is designed to provide near real-time SAR imagery using the S-Band. ICEYE is a recent start-up company who have raised $17 m in venture capital funding in the last few years. They hope to have a global imaging constellation by the end of 2020.

Amongst the remaining cubesats, there are a couple of really intriguing ones:

  • CNUSail 1 (Chungnam National University Sail) is a solar sail experiment from Chungnam National University in South Korea. It aims to successfully deploy a solar sail in LEO and then to de-orbit using the sail membrane as a drag-sail. There has been a lot of discussion around solar sails from propulsion systems through to mechanisms to clear space debris, so it will be fascinating to see the outcome.
  • IRVINE01 is the culmination of a STEM project started in 1999 in six public high schools in Irvine, California, which has given students the experience of building, testing and launching a cubesat to inspire the next generation of space scientists. This is a fantastic project!

We’re also really excited about the launch of the NovaSAR-S cubesat, which was also originally planned to be on this launch (as reflected in the first version of this blog). It is going to be launched later this year. NovaSAR-S, also built by SSTL, is of particular interested to Pixalytics as we’ve previously been involved in a project to simulate NovaSAR-S data and so we’re excited to see what the actual data looks like. NovaSAR-S is a Synthetic Aperture Radar (SAR) mission using the S-Band, which will operate in a sun-synchronous orbit at an altitude of 580 km. It has four imaging modes:

  • ScanSAR mode with a swath width of 100 km at 20 m spatial resolution.
  • Maritime mode with a swath width of > 400 km and a spatial resolution of 6 m across the track and 13.7m along the track.
  • Stripmap mode with a swath width of 15-20 km and a spatial resolution of 6 m.
  • ScanSAR wide mode with a swath width of 140km and a spatial resolution of 30 m.

The data will be used for applications including flooding, disaster monitoring, forestry, ship tracking, oil spill, land cover use and classification, crop monitoring and ice monitoring. We’ve going to keep an eye out for its launch!

This is just the start of 2018, and we hope it’s piqued your interest in EO as it’s going to be an exciting year!

Have you read the top Pixalytics blogs of 2017?

World Cloud showing top 100 words from Pixalytics 2017 blogs

In our final blog of the year, we’re looking back at our most popular posts of the last twelve months. Have you read them all?

Of the top ten most read blogs, nine were actually written in previous years. These were:

You’ll notice that this list is dominated by our annual reviews of the number of satellites, and Earth observation satellites, orbiting the Earth. It often surprises us to see where these blogs are quoted and we’ve been included in articles on websites for Time Magazine, Fortune Magazine and the New Statesman to name a few!

So despite only being published in November this year coming in as the fourth most popular blog of the year was, unsurprisingly:

For posts published in 2017, the other nine most popular were:

2017 has been a really successful one for our website. The number of the views for the year is up by 75%, whilst the number of unique visitors has increased by 92%!

Whilst hard work, we do enjoy writing our weekly blog – although staring at a blank screen on a Wednesday morning without any idea of what we’ll publish a few hours later can be daunting!

We’re always delighted at meetings and conferences when people come up and say they read the blog. It’s nice to know that we’re read both within our community, as well as making a small contribution to informing and educating people outside the industry.

Thanks for reading this year, and we hope we can catch your eye again next year.

We’d like to wish everyone a Happy New Year, and a very successful 2018!

Merry Christmas!

UK at night. November 2017 monthly composite from the Visible Infrared Imaging Radiometer Suite,(Day/Night Band). Image and Data processing courtesy of Earth Observation Group, NOAA/NCEI.

MERRY CHRISTMAS

AND BEST WISHES FOR 2018 

from everyone at Pixalytics

Looking To Earth Observation’s Future

Artist’s view of Sentinel-3. Image courtesy of ESA–Pierre Carril.

The future is very much the theme for Earth Observation (EO) in Europe this week.

One of the biggest potential impacts for the industry could come out of a meeting that took place yesterday, 7 November, in Tallinn, Estonia as part of European Space Week. It was a meeting between the European Union (EU) and the European Space Agency (ESA) to discuss the next steps for the Copernicus programme beyond 2020. This is important in terms of not only continuing the current Sentinel missions, but also expanding what is monitored. There are concerns over gaps in coverage for certain types of missions which Europe could help to fill.

As an EO SME we’re intrigued to see the outcomes of these discussions as they include a focus on how to leverage Copernicus data more actively within the private sector. According to a recent Industry Survey by the European Association of Remote Sensing Companies (EARSC), there are just over 450 EO companies operating in Europe, and 66% of these are micro companies like Pixalytics – defined by having less than ten employees. This rises to 95% of all EO European companies if you include small businesses – with between 10 and 50 employees.

Therefore, if the EU/ESA is serious about developing the entrepreneurial usage of Copernicus data, it will be the small and micro companies that will make the difference. As these companies grow, they will need high skilled employees to support them.

Looking towards the next generation of EO scientists, the UK Space Agency announced seven new outreach projects this week inspire children to get involved in space specifically and more widely, to increase interest in studying science, technology, engineering and mathematics (STEM) subjects. The seven projects are:

  1. Glasgow Science Festival: Get me into orbit!
  2. Triathlon Trust: Space to Earth view
  3. Mangorolla CIC: Space zones ‘I’m a Scientist’ and ‘I’m an Engineer’
  4. Institute for Research in Schools: MELT: Monitoring the Environment, Learning for Tomorrow
  5. The Design and Technology Association: Inspiring the next generation: design and technology in space
  6. European Space Education Resource Office-UK: James Webb Space Telescope: Design challenge
  7. Children’s Radio UK (Fun Kids): Deep Space High – UK Spaceports

There will be a total of £210,000 invested in these. We’re particularly excited to see the MELT project which will get students to use EO data to analyse what is happening at the two poles.

Each of these elements will help shape the EO industry in this country. With the UK committed to remaining within ESA, decisions on the future of the Copernicus programme will provide a strong strategic direction for both the space and EO industries in Europe. Delivering on that direction will require the next generation workforce who will come from the children studying STEM subjects now.

Both the strategic direction, and associated actions to fulfil those ambitions, are vital for future EO success.

5 Signs You Work In Earth Observation

Sentinel-2A image of UK south east coastline, acquired on 4th September 2017. Data courtesy of ESA/Copernicus.

Do you recognise yourself in any these five signs? if so, you’re definitely working in the Earth observation industry.

  1. You have a favourite satellite or instrument, or image search tool.
  2. When a satellite image appears on television, you tell everyone in the room which satellite/sensor it came from.
  3. You’ve got an irrational hatred for clouds (unless you’re working on clouds or using radar images).
  4. Anything space related happens and your family asks whether you’re involved with it, and thinks you know everyone who works at NASA or ESA.
  5. Your first reaction to seeing an interesting location isn’t that you should plan to go there. Instead, you wonder whether it would make a good satellite image.

We tick all of these signs at Pixalytics! Last week we suffered from number five when we saw a snippet from the season finale of the UK TV programme ‘Liar’. It wasn’t a programme we’d watched, but as we caught an atmospheric panning shot of the location, and only one thought when through our minds, ‘That would make a great satellite image!’

It was a stunning shot of a marshland with water interwoven between islands. Without knowing anything about the programme, we were expecting it to have been filmed in a far flung Nordic location. Following a bit of impromptu googling we were surprised to discover it was actually Tollesbury on the Essex coast in the UK. It also turns out that we were late to the party on the discovery of the programme and the location.

Sentinel-2A image of Mersea Island and surrounding area, acquired on 4th September 2017. Data courtesy of ESA/Copernicus.

The image on the right shows Mersea Island, which has brown saltmarshes above it within the adjacent inlets of the Blackwater Estuary. To the left of the island is the village of Tollesbury and the Tollesbury marina, which is located within the saltmarshes. This area is the largest of the saltmarshes of Essex, but only the fifth largest of the UK. They play a key role in flood protection and can reduce the height of damaging waves in storm surge conditions by 20%. However, they are disappearing due to sea erosion that’s caused a sixty percent reduction in the last 20 years.

The image itself is a zoomed in pseudo-true-colour composite at 10 m spatial resolution using data acquired by Sentinel-2A on the 4th September 2017 – a surprisingly cloud free day for the UK. The full Sentinel-2 image can be seen at the top of the blog.

As often happens when we look in detail at satellite images, something catches our eye. This time it was the three bluish looking strips just above Mersea island. These are the 82,944 solar panels which make up Langenhoe Solar Farm, and have the capacity to generate 21.15 MW of solar power.

So how many of you recognise our signs of working in Earth observation? Any you think we’ve missed? Get in touch, let us know!