Looking To Earth Observation’s Future

Artist’s view of Sentinel-3. Image courtesy of ESA–Pierre Carril.

The future is very much the theme for Earth Observation (EO) in Europe this week.

One of the biggest potential impacts for the industry could come out of a meeting that took place yesterday, 7 November, in Tallinn, Estonia as part of European Space Week. It was a meeting between the European Union (EU) and the European Space Agency (ESA) to discuss the next steps for the Copernicus programme beyond 2020. This is important in terms of not only continuing the current Sentinel missions, but also expanding what is monitored. There are concerns over gaps in coverage for certain types of missions which Europe could help to fill.

As an EO SME we’re intrigued to see the outcomes of these discussions as they include a focus on how to leverage Copernicus data more actively within the private sector. According to a recent Industry Survey by the European Association of Remote Sensing Companies (EARSC), there are just over 450 EO companies operating in Europe, and 66% of these are micro companies like Pixalytics – defined by having less than ten employees. This rises to 95% of all EO European companies if you include small businesses – with between 10 and 50 employees.

Therefore, if the EU/ESA is serious about developing the entrepreneurial usage of Copernicus data, it will be the small and micro companies that will make the difference. As these companies grow, they will need high skilled employees to support them.

Looking towards the next generation of EO scientists, the UK Space Agency announced seven new outreach projects this week inspire children to get involved in space specifically and more widely, to increase interest in studying science, technology, engineering and mathematics (STEM) subjects. The seven projects are:

  1. Glasgow Science Festival: Get me into orbit!
  2. Triathlon Trust: Space to Earth view
  3. Mangorolla CIC: Space zones ‘I’m a Scientist’ and ‘I’m an Engineer’
  4. Institute for Research in Schools: MELT: Monitoring the Environment, Learning for Tomorrow
  5. The Design and Technology Association: Inspiring the next generation: design and technology in space
  6. European Space Education Resource Office-UK: James Webb Space Telescope: Design challenge
  7. Children’s Radio UK (Fun Kids): Deep Space High – UK Spaceports

There will be a total of £210,000 invested in these. We’re particularly excited to see the MELT project which will get students to use EO data to analyse what is happening at the two poles.

Each of these elements will help shape the EO industry in this country. With the UK committed to remaining within ESA, decisions on the future of the Copernicus programme will provide a strong strategic direction for both the space and EO industries in Europe. Delivering on that direction will require the next generation workforce who will come from the children studying STEM subjects now.

Both the strategic direction, and associated actions to fulfil those ambitions, are vital for future EO success.

5 Signs You Work In Earth Observation

Sentinel-2A image of UK south east coastline, acquired on 4th September 2017. Data courtesy of ESA/Copernicus.

Do you recognise yourself in any these five signs? if so, you’re definitely working in the Earth observation industry.

  1. You have a favourite satellite or instrument, or image search tool.
  2. When a satellite image appears on television, you tell everyone in the room which satellite/sensor it came from.
  3. You’ve got an irrational hatred for clouds (unless you’re working on clouds or using radar images).
  4. Anything space related happens and your family asks whether you’re involved with it, and thinks you know everyone who works at NASA or ESA.
  5. Your first reaction to seeing an interesting location isn’t that you should plan to go there. Instead, you wonder whether it would make a good satellite image.

We tick all of these signs at Pixalytics! Last week we suffered from number five when we saw a snippet from the season finale of the UK TV programme ‘Liar’. It wasn’t a programme we’d watched, but as we caught an atmospheric panning shot of the location, and only one thought when through our minds, ‘That would make a great satellite image!’

It was a stunning shot of a marshland with water interwoven between islands. Without knowing anything about the programme, we were expecting it to have been filmed in a far flung Nordic location. Following a bit of impromptu googling we were surprised to discover it was actually Tollesbury on the Essex coast in the UK. It also turns out that we were late to the party on the discovery of the programme and the location.

Sentinel-2A image of Mersea Island and surrounding area, acquired on 4th September 2017. Data courtesy of ESA/Copernicus.

The image on the right shows Mersea Island, which has brown saltmarshes above it within the adjacent inlets of the Blackwater Estuary. To the left of the island is the village of Tollesbury and the Tollesbury marina, which is located within the saltmarshes. This area is the largest of the saltmarshes of Essex, but only the fifth largest of the UK. They play a key role in flood protection and can reduce the height of damaging waves in storm surge conditions by 20%. However, they are disappearing due to sea erosion that’s caused a sixty percent reduction in the last 20 years.

The image itself is a zoomed in pseudo-true-colour composite at 10 m spatial resolution using data acquired by Sentinel-2A on the 4th September 2017 – a surprisingly cloud free day for the UK. The full Sentinel-2 image can be seen at the top of the blog.

As often happens when we look in detail at satellite images, something catches our eye. This time it was the three bluish looking strips just above Mersea island. These are the 82,944 solar panels which make up Langenhoe Solar Farm, and have the capacity to generate 21.15 MW of solar power.

So how many of you recognise our signs of working in Earth observation? Any you think we’ve missed? Get in touch, let us know!

3 Ways Earth Observation is Tackling Food Security

Artist's rendition of a satellite - paulfleet/123RF Stock Photo

Artist’s rendition of a satellite – paulfleet/123RF Stock Photo

One of the key global challenges is food security. A number of reports issued last week, coinciding with World Food Day on the 16th October, demonstrated how Earth Observation (EO) could play a key part in tackling this.

Climate change is a key threat to food security. The implications were highlighted by the U.S. Geological Survey (USGS) report who described potential changes to suitable farmland for rainfed crops. Rainfed farming accounts for approximately 75 percent of global croplands, and it’s predicated that these locations will change in the coming years. Increased farmland will be available in North America, western Asia, eastern Asia and South America, whilst there will be a decline in Europe and the southern Great Plains of the US.

The work undertaken by USGS focussed on looking at the impact of temperature extremes and the associated changes in seasonality of soil moisture conditions. The author of the study, John Bradford said “Our results indicate the interaction of soil moisture and temperature extremes provides a powerful yet simple framework for understanding the conditions that define suitability for rainfed agriculture in drylands.” Soil moisture is a product that Pixalytics is currently working on, and its intriguing to see that this measurement could be used to monitor climate change.

Given that this issue may require farmers to change crops, work by India’s Union Ministry of Agriculture to use remote sensing data to identify areas best suited for growing different crops is interesting. The Coordinated Horticulture Assessment and Management using geoinformatics (CHAMAN) project has used data collected by satellites, including the Cartosat Series and RESOURCESAT-1, to map 185 districts in relation to the best conditions for growing bananas, mangos, citrus fruits, potatoes, onions, tomatoes and chilli peppers.

The results for eight states in the north east of the country will be presented in January, with the remainder a few months later, identifying the best crop for each district. Given that India is already the second largest producer of fruit and vegetables in the world, this is a fascinating strategic development to their agriculture industry.

The third report was the announcement of a project between the University of Queensland and the Chinese Academy of Sciences which hopes to improve the accuracy of crop yield predictions. EO data with an improved spatial, and temporal, resolution is being used alongside biophysical information to try to predict crop yield at a field scale in advance of the harvest. It is hoped that this project will produce an operational product through this holistic approach.

These are some examples of the way in which EO data is changing the way we look at agriculture, and potential help provide improved global food security in the future.

Inspiring the Next Generation of EO Scientists

Artist's rendition of a satellite - 3dsculptor/123RF Stock Photo

Artist’s rendition of a satellite – 3dsculptor/123RF Stock Photo

Last week, whilst Europe’s Earth Observation (EO) community was focussed on the successful launch of Sentinel-5P, over in America Tuesday 10th October was Earth Observation Day!

This annual event is co-ordinated by AmericaView, a non-profit organisation, whose aim to advance the widespread use of remote sensing data and technology through education and outreach, workforce development, applied research, and technology transfer to the public and private sectors.

Earth Observation Day is a Science, Technology, Engineering, and Mathematics (STEM) event celebrating the Landsat mission and its forty-five year archive of imagery. Using satellite imagery provides valuable experience for children in maths and sciences, together with introducing subjects such as land cover, food production, hydrology, habitats, local climate and spatial thinking. The AmericaView website contains a wealth of EO materials available for teachers to use, from fun puzzles and games through to a variety of remote sensing tutorials. Even more impressive is that the event links schools to local scientists in remote sensing and geospatial technologies. These scientists provide support to teachers including giving talks, helping design lessons or being available to answer student’s questions.

This is a fantastic event by AmericaView, supporting by wonderful resources and remote sensing specialists. We first wrote about this three years ago, and thought the UK would benefit from something similar. We still do. The UK Space Agency recently had an opportunity for organisations interested in providing education and outreach activities to support EO, satellite launch programme or the James Webb Space Telescope. It will be interesting to see what the successful candidates come up with.

At Pixalytics we’re passionate about educating and inspiring the next generation of EO scientists. For example, we regularly support the Remote Sensing and Photogrammetry Society’s Wavelength conference for students and early career scientists; and sponsored the Best Early-Career Researcher prize at this year’s GISRUK Conference. We’re also involved with two exciting events at Plymouth’s Marine Biological Association, a Young Marine Biologists (YMB) Summit for 12-18 year olds at the end of this month and their 2018 Postgraduate conference.

Why is this important?
The space industry, and the EO sector, is continuing to grow. According to Euroconsult’s ‘Satellites to Be Built & Launched by 2026 – I know this is another of the expensive reports we highlighted recently – there will be around 3,000 satellites with a mass above 50 kg launched in the next decade – of which around half are anticipated as being used for EO or communication purposes. This almost doubles the number of satellites launched in the last ten years and doesn’t include the increasing number of nano and cubesats going up.

Alongside the number of satellites, technological developments mean that the amount of EO data available is increasing almost exponentially. For example, earlier this month World View successfully completed multi-day flight of its Stratollite™ service, which uses high-altitude balloons coupled with the ability to steer within stratospheric winds. They can carry a variety of sensors, a mega-pixel camera was on the recent flight, offering an alternative vehicle for collecting EO data.

Therefore, we need a future EO workforce who are excited, and inspired, by the possibilities and who will take this data and do fantastic things with it.

To find that workforce we need to shout about our exciting industry and make sure everyone knows about the career opportunities available.

Can You See The Great Wall of China From Space?

Area north of Beijing, China, showing the Great Wall of China running through the centre. Image acquired by Sentinel-2 on 27th June 2017. Data courtesy of ESA/Copernicus.

Dating back over two thousand three hundred years, the Great Wall of China winds its way from east to west across the northern part of the country. The current remains were built during Ming Dynasty and have a length of 8 851.8 km according to 2009 work by the Chinese State Administration of Cultural Heritage and National Bureau of Surveying and Mapping Agency. However, if you take into account the different parts of the wall built by other dynasties, its length is almost twenty two thousand kilometres.

The average height of the wall is between six and seven metres, and its width is between four to five metres. This width would allow five horses, or ten men, to walk side by side. The sheer size of the structure has led people to believe that it could be seen from space. This was first described by William Stukeley in 1754, when he wrote in reference to Hadrian’s Wall that ‘This mighty wall of four score miles in length is only exceeded by the Chinese Wall, which makes a considerable figure upon the terrestrial globe, and may be discerned at the Moon.’

Despite Stukeley’s personal opinion not having any scientific basis, it has been repeated many times since. By the time humans began to go into space, it was considered a fact. Unfortunately, astronauts such as Buzz Aldrin, Chris Hatfield and even China’s first astronaut, Yang Liwei, have all confirmed that the Great Wall is not visible from space by the naked eye. Even Pixalytics has got a little involved in this debate. Two years ago we wrote a blog saying that we couldn’t see the wall on Landsat imagery as the spatial resolution was not small enough to be able to distinguish it from its surroundings.

Anyone who is familiar with the QI television series on the BBC will know that they occasionally ask the same question in different shows and give different answers when new information comes to light. This time it’s our turn!

Last week Sam was a speaker at the TEDx One Step Beyond event at the National Space Centre in Leicester – you’ll hear more of that in a week or two. However, in exploring some imagery for the event we looked for the Great Wall of China within Sentinel-2 imagery. And guess what? We found it! In the image at the top, the Great Wall can be seen cutting down the centre from the top left.

Screenshot of SNAP showing area north of Beijing, China. Data acquired by Sentinel-2 on 27th June 2017. Data courtesy of ESA/Copernicus.

It was difficult to spot. The first challenge was getting a cloud free image of northern China, and we only found one covering our area of interest north of Beijing! Despite Sentinel-2 having 10 m spatial resolution for its visible wavelengths, as noted above, the wall is generally narrower. This means it is difficult to see the actual wall itself, but it is possible to see its path on the image. This ability to see very small things from space by their influence on their surroundings is similar to how we are able to spot microscopic phytoplankton blooms. The image on the right is a screenshot from Sentinel Application Platform tool (SNAP) which shows the original Sentinel-2 image of China on the top left and the zoomed section identifying the wall.

So whilst the Great Wall of China might not be visible from space with the naked eye, it is visible from our artificial eyes in the skies, like Sentinel-2.

Evolution of the Earth Observation Market

Artist's rendition of a satellite - 3dsculptor/123RF Stock Photo

Artist’s rendition of a satellite – 3dsculptor/123RF Stock Photo

The changing Earth Observation (EO) market has been a topic of office conversation this week at Pixalytics. We’re currently in the final stage of developing our own product portal, and it was interesting to see that some of our thoughts were echoed by reports from last week’s World Satellite Business Week event in Paris.

Unsurprisingly, speakers at the event agreed that the EO sector has huge growth potential. This is something we regularly see highlighted in various emails and press releases. For example, in the last few weeks we’ve had:

At a few thousand dollars for access to each report, we’ve said before that one of the products we should develop is an annual report on the EO market!

As we’ve been working towards our portal, one of issues we’ve identified is how difficult some portals are to navigate, particularly if you are not an EO expert. This was also recognised at the Paris event, with an acknowledgement that EO companies need to understand what customers want and then provide a user friendly experience to deliver those needs.

As reported by Tereza Pultarova in Space News, there was also discussion on the need to move away from simply selling data, and instead provide answers to the practical questions about the planet that businesses and consumers have. It is only through this transformation that new sectors and markets for EO will open which will be the key for the aforementioned future growth. The Paris event also highlighted some of the key trends that will be the backbone of this transformation:

  • Providing as close as possible to near real time data.
  • Increased data analytics, particularly through machine learning and artificial intelligence platforms to analyse data and highlight anomalies and changes faster.
  • Bringing satellite data together with social media information to rapidly enable context to be added to images.
  • Vertical integration within the industry within satellite firms acquiring with data processing and analytics companies; for example, Digital Globe acquired The Radiant Group earlier this year.
  • Processing data onboard satellites, so users download the information they want, rather than reams of data.

There was a really interesting analogy with the navigation industry given by Wade Larson, president and CEO of Urthecast. He said “Navigation became kind of embedded infrastructure in a much larger industry called location-based services. We think that this is happening with geoanalytics.”

This is the direction of travel for the industry, and some players are moving faster than others. Last week Airbus confirmed their four satellite very high-resolution-imaging constellation, Pléiades Neo, is on schedule for launch in 2020. This will have 30 cm spatial resolution and will utilise the Space Data Highway, also known as the European Data Relay System (EDRS), to stream the images into an online platform. The ERDS uses lasers to transfer up to 40 terabytes a day at a speed of up to 1.8 Gbits per second, meaning users will have access to data in near real time.

This evolution of the EO market needs to be recognised by every company in the industry from the Airbus down to the small company’s trying to launch their own product portal. If you don’t move with the changing market, you won’t get any of the market.

Silver Anniversary for Ocean Altimetry Space Mission

Artist rendering of Jason-3 satellite over the Amazon.
Image Courtesy NASA/JPL-Caltech.

August 10th 1992 marked the launch of the TOPEX/Poseidon satellite, the first major oceanographic focussed mission. Twenty five years, and three successor satellites, later the dataset begun by TOPEX/Poseidon is going strong providing sea surface height measurements.

TOPEX/Poseidon was a joint mission between NASA and France’s CNES space agency, with the aim of mapping ocean surface topography to improve our understanding of ocean currents and global climate forecasting. It measured ninety five percent of the world’s ice free oceans within each ten day revisit cycle. The satellite carried two instruments: a single-frequency Ku-band solid-state altimeter and a dual-frequency C- and Ku-band altimeter sending out pulses at 13.6 GHz and 5.3 GHz respectively. The two bands were selected due to atmospheric sensitivity, as the difference between them provides estimates of the ionospheric delay caused by the charged particles in the upper atmosphere that can delay the returned signal. The altimeter sends radio pulses towards the earth and measures the characteristics of the returned echo.

When TOPEX/Poseidon altimetry data is combined with other information from the satellite, it was able to calculate sea surface heights to an accuracy of 4.2 cm. In addition, the strength and shape of the return signal also allow the determination of wave height and wind speed. Despite TOPEX/Poseidon being planned as a three year mission, it was actually active for thirteen years, until January 2006.

The value in the sea level height measurements resulted in a succeeding mission, Jason-1, launched on December 7th 2001. It was put into a co-ordinated orbit with TOPEX/Poseidon and they both took measurements for three years, which allowed both increased data frequency and the opportunity for cross calibration of the instruments. Jason-1 carried a CNES Poseidon-2 Altimeter using the same C- and Ku-bands, and following the same methodology it had the ability to measure sea-surface height to an improved accuracy of 3.3 cm. It made observations for 12 years, and was also overlapped by its successor Jason-2.

Jason-2 was launched on the 20 June 2008. This satellite carried a CNES Poseidon-3 Altimeter with C- and Ku-bands with the intention of measuring sea height to within 2.5cm. With Jason-2, National Oceanic and Atmospheric Administration (NOAA) and the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) took over the management of the data. The satellite is still active, however due to suspected radiation damage its orbit was lowered by 27 km, enabling it to produce an improved, high-resolution estimate of Earth’s average sea surface height, which in turn will help improve the quality of maps of the ocean floor.

Following the established pattern, Jason-3 was launched on the 17th January 2016. It’s carrying a Poseidon-3B radar altimeter, again using the same C and Ku bands and on a ten day revisit cycle.

Together these missions have provided a 25 year dataset on sea surface height, which has been used for applications such as:

  • El Niño and La Niña forecasting
  • Extreme weather forecasting for hurricanes, floods and droughts
  • Ocean circulation modelling for seasons and how this affects climate through by moving heat around the globe
  • Tidal forecasting and showing how this energy plays an important role in mixing water within the oceans
  • Measurement of inland water levels – at Pixalytics we have a product that we have used to measure river levels in the Congo and is part of the work we are doing on our International Partnership Programme work in Uganda.

In the future, the dataset will be taken forward by the Jason Continuity of Service (Jason-CS) on the Sentinel-6 ocean mission which is expected to be launched in 2020.

Overall, altimetry data from this series of missions is a fantastic resource for operational oceanography and inland water applications, and we look forward to its next twenty five years!

Supporting Soil Fertility From Space

Sentinel-2 pseudo-true colour composite from 2016 with a Kompsat-3 Normalized Difference Vegetation Index (NDVI) product from 2015 inset. Sentinel data courtesy of ESA/Copernicus.

Last Tuesday I was at the academic launch event for the Tru-Nject project at Cranfield University. Despite the event’s title, it was in fact an end of project meeting. Pixalytics has been involved in the project since July 2015, when we agreed to source and process high resolution satellite Earth Observation (EO) imagery for them.

The Tru-Nject project is funded via Innovate UK. It’s official title is ‘Tru-Nject: Proximal soil sensing based variable rate application of subsurface fertiliser injection in vegetable/ combinable crops’. The focus is on modelling soil fertility within fields, to enable fertiliser to be applied in varying amounts using point-source injection technology which reduces the nitrogen loss to the atmosphere when compared with spreading fertiliser on the soil surface.

To do this the project created soil fertility maps from a combination of EO products, physical sampling and proximal soil sensing – where approximately 15 000 georeferenced hyperspectral spectra are collected using an instrument connected to a tractor. These fertility maps are then interpreted by an agronomist, who decides on the relative application of fertiliser.

Initial results have shown that applying increased fertiliser to areas of low fertility improves overall yield when compared to applying an equal amount of fertiliser everywhere, or applying more fertiliser to high yield areas.

Pixalytics involvement in the work focussed on acquiring and processing, historical, and new, sub 5 metre optical satellite imagery for two fields, near Hull and York. We have primarily acquired data from the Kompsat satellites operated by the Korea Aerospace Research Institute (KARI), supplemented with WorldView data from DigitalGlobe. Once we’d acquired the imagery, we processed it to:

  • remove the effects of the atmosphere, termed atmospheric correction, and then
  • converted them to maps of vegetation greenness

The new imagery needed to coincide with a particular stage of crop growth, which meant the satellite data acquisition period was narrow. This led to a pleasant surprise for Dave George, Tru-Nject Project Manager, who said, “I never believed I’d get to tell a satellite what to do.’ To ensure that we collected data on specific days we did task the Kompsat satellites each year.

Whilst we were quite successful with the tasking the combination of this being the UK, and the fact that the fields were relatively small, meant that some of the images were partly affected by cloud. Where this occurred we gap-filled with Copernicus Sentinel-2 data, it has coarser spatial resolution (15m), but more regular acquisitions.

In addition, we also needed to undertake vicarious adjustment to ensure that we produced consistent products over time whilst the data came from different sensors with different specifications. As we cannot go to the satellite to measure its calibration, vicarious adjustment is a technique which uses ground measurements and algorithms to not only cross-calibrate the data, but also adjusts for errors in the atmospheric correction.

An example of the work is at the top, which shows a Sentinel-2 pseudo-true colour composite from 2016 with a Kompsat-3 Normalized Difference Vegetation Index (NDVI) product from 2015 inset. The greener the NDVI product the more green the vegetation is, although the two datasets were collected in different years so the planting within the field varies.

We’ve really enjoyed working with Stockbridge Technology Centre Ltd (STC), Manterra Ltd, and Cranfield University, who were the partners in the project. Up until last week all the work was done via telephone and email, and so it was great to finally meet them in-person, hear about the successful project and discuss ideas for the future.

Landsat Turns 45!

False colour image of Dallas, Texas. The first fully operational Landsat image taken on July 25, 1972, Image courtesy: NASA’s Earth Observatory

Landsat has celebrated forty-five years of Earth observation this week. The first Landsat mission was Earth Resources Technology Satellite 1 (ERTS-1), which was launched into a sun-synchronous near polar orbit on the 23 July 1972. It wasn’t renamed Landsat-1 until 1975. It had an anticipated life of 1 year and carried two instruments: the Multi Spectral Scanner (MSS) and the Return-Beam Vidicon (RBV).

The Landsat missions have data continuity at their heart, which has given a forty-five year archive of Earth observation imagery. However, as technological capabilities have developed the instruments on consecutive missions have improved. To demonstrate and celebrate this, NASA has produced a great video showing the changing coastal wetlands in Atchafalaya Bay, Louisiana, through the eyes of the different Landsat missions.

In total there have been eight further Landsat missions, but Landsat 6 failed to reach its designated orbit and never collected any data. The missions have been:

  • Landsat 1 launched on 23 July 1972.
  • Landsat 2 launched on 22 January 1975.
  • Landsat 3 was launched on 5 March 1978.
  • Landsat 4 launched on 16 July 1982.
  • Landsat 5 launched on 1 March 1984.
  • Landsat 7 launched on 15 April 1999, and is still active.
  • Landsat 8 launched on 11 February 2013, and is still active.

Landsat 9 is planned to be launched at the end 2020 and Landsat 10 is already being discussed.

Some of the key successes of the Landsat mission include:

  • Over 7 million scenes of the Earth’s surface.
  • Over 22 million scenes had been downloaded through the USGS-EROS website since 2008, when the data was made free-to-access, with the rate continuing to increase (Campbell 2015).
  • Economic value of just one year of Landsat data far exceeds the multi-year total cost of building, launching, and managing Landsat satellites and sensors.
  • Landsat 5 officially set a new Guinness World Records title for the ‘Longest-operating Earth observation satellite’ with its 28 years and 10 months of operation when it was decommissioned in December 2012.
  • ESA provides Landsat data downlinked via their own data receiving stations; the ESA dataset includes data collected over the open ocean, whereas USGS does not, and the data is processed using ESA’s own processor.

The journey hasn’t always been smooth. Although established by NASA, Landsat was transferred to the private sector under the management of NOAA in the early 1980’s, before returning to US Government control in 1992. There have also been technical issues, the failure of Landsat 6 described above; and Landsat 7 suffering a Scan Line Corrector failure on the 31st May 2003 which means that instead of mapping in straight lines, a zigzag ground track is followed. This causes parts of the edge of the image not to be mapped, giving a black stripe effect within these images; although the centre of the images is unaffected the data overall can still be used.

Landsat was certainly a game changer in the remote sensing and Earth observation industries, both in terms of the data continuity approach and the decision to make the data free to access. It has provided an unrivalled archive of the changing planet which has been invaluable to scientists, researchers, book-writers and businesses like Pixalytics.

We salute Landsat and wish it many more years!

Pixalytics: Five Years & Thriving!

Background Image: Sutichak Yachaingham / 123 Stock Photo

The start of June marked the five-year anniversary of Pixalytics!

For a small start-up business, like ours, five years is an important milestone. Depending on which you report you believe only around 50%, or even 40%, of new small business survive their five years! So we should definitely celebrate the fact that we’re still here!

The last twelve months have been successful for us. Our key highlights have included:

  • Continuing to grow our income year-on-year
  • Expanded our team to five, soon to be six, employees – which is a 100% increase over the last year!
  • Moved to a new office on Plymouth Science Park
  • Part of a consortium developing a Drought and Flood Mitigation Service (DFMS) in Uganda.
  • Secured our first European Contract and so now we are exporters!

It has been a lot of hard work, but we’re really pleased with what we’ve achieved.

In a similar blog last year, we wrote about our target of releasing an innovative series of automated Earth Observation products and services. You’ll have noticed that this is not listed in our highlights, as despite our efforts we’ve not managed to do this … yet.

We have made significant progress with our eStore. We have a number of products almost ready to go, the product interface has been developed and we’re currently developing the front end eCommerce website. We’re intending to go live with flooding, turbidity and ocean colour products. So watch this space, things will be happening later this year – we hope!

Launching the products is really the easy bit, the difficult part will be getting people to buy them and this a challenge which firms much larger than us are still to effectively solve. As a small business we tend to market through our website, social media and the odd exhibition. However, we’ll need to come up with some new cost-effective innovative ideas for our eStore if it is to be successful. We’re also participating in Europe wide projects established by EARSC and the Copernicus World Alliance looking at ways of developing the market and promoting Earth Observation products and services.

For the last couple of years we’ve quoted a phrase from ‘Worstward Ho’, a monologue by Samuel Beckett which is ‘Ever tried. Ever failed. No matter. Try Again. Fail again. Fail better.’

This sums up our approach. We try things. If they don’t work out, we try something else. It’s worked okay so far.

Before we leave our five year celebration, we wanted to take the opportunity to thank all of the people who’ve helped us along our journey, including the readers of our blog.

Let’s hope we’re still here in another five years!