Evolution of the Earth Observation Market

Artist's rendition of a satellite - 3dsculptor/123RF Stock Photo

Artist’s rendition of a satellite – 3dsculptor/123RF Stock Photo

The changing Earth Observation (EO) market has been a topic of office conversation this week at Pixalytics. We’re currently in the final stage of developing our own product portal, and it was interesting to see that some of our thoughts were echoed by reports from last week’s World Satellite Business Week event in Paris.

Unsurprisingly, speakers at the event agreed that the EO sector has huge growth potential. This is something we regularly see highlighted in various emails and press releases. For example, in the last few weeks we’ve had:

At a few thousand dollars for access to each report, we’ve said before that one of the products we should develop is an annual report on the EO market!

As we’ve been working towards our portal, one of issues we’ve identified is how difficult some portals are to navigate, particularly if you are not an EO expert. This was also recognised at the Paris event, with an acknowledgement that EO companies need to understand what customers want and then provide a user friendly experience to deliver those needs.

As reported by Tereza Pultarova in Space News, there was also discussion on the need to move away from simply selling data, and instead provide answers to the practical questions about the planet that businesses and consumers have. It is only through this transformation that new sectors and markets for EO will open which will be the key for the aforementioned future growth. The Paris event also highlighted some of the key trends that will be the backbone of this transformation:

  • Providing as close as possible to near real time data.
  • Increased data analytics, particularly through machine learning and artificial intelligence platforms to analyse data and highlight anomalies and changes faster.
  • Bringing satellite data together with social media information to rapidly enable context to be added to images.
  • Vertical integration within the industry within satellite firms acquiring with data processing and analytics companies; for example, Digital Globe acquired The Radiant Group earlier this year.
  • Processing data onboard satellites, so users download the information they want, rather than reams of data.

There was a really interesting analogy with the navigation industry given by Wade Larson, president and CEO of Urthecast. He said “Navigation became kind of embedded infrastructure in a much larger industry called location-based services. We think that this is happening with geoanalytics.”

This is the direction of travel for the industry, and some players are moving faster than others. Last week Airbus confirmed their four satellite very high-resolution-imaging constellation, Pléiades Neo, is on schedule for launch in 2020. This will have 30 cm spatial resolution and will utilise the Space Data Highway, also known as the European Data Relay System (EDRS), to stream the images into an online platform. The ERDS uses lasers to transfer up to 40 terabytes a day at a speed of up to 1.8 Gbits per second, meaning users will have access to data in near real time.

This evolution of the EO market needs to be recognised by every company in the industry from the Airbus down to the small company’s trying to launch their own product portal. If you don’t move with the changing market, you won’t get any of the market.

Silver Anniversary for Ocean Altimetry Space Mission

Artist rendering of Jason-3 satellite over the Amazon.
Image Courtesy NASA/JPL-Caltech.

August 10th 1992 marked the launch of the TOPEX/Poseidon satellite, the first major oceanographic focussed mission. Twenty five years, and three successor satellites, later the dataset begun by TOPEX/Poseidon is going strong providing sea surface height measurements.

TOPEX/Poseidon was a joint mission between NASA and France’s CNES space agency, with the aim of mapping ocean surface topography to improve our understanding of ocean currents and global climate forecasting. It measured ninety five percent of the world’s ice free oceans within each ten day revisit cycle. The satellite carried two instruments: a single-frequency Ku-band solid-state altimeter and a dual-frequency C- and Ku-band altimeter sending out pulses at 13.6 GHz and 5.3 GHz respectively. The two bands were selected due to atmospheric sensitivity, as the difference between them provides estimates of the ionospheric delay caused by the charged particles in the upper atmosphere that can delay the returned signal. The altimeter sends radio pulses towards the earth and measures the characteristics of the returned echo.

When TOPEX/Poseidon altimetry data is combined with other information from the satellite, it was able to calculate sea surface heights to an accuracy of 4.2 cm. In addition, the strength and shape of the return signal also allow the determination of wave height and wind speed. Despite TOPEX/Poseidon being planned as a three year mission, it was actually active for thirteen years, until January 2006.

The value in the sea level height measurements resulted in a succeeding mission, Jason-1, launched on December 7th 2001. It was put into a co-ordinated orbit with TOPEX/Poseidon and they both took measurements for three years, which allowed both increased data frequency and the opportunity for cross calibration of the instruments. Jason-1 carried a CNES Poseidon-2 Altimeter using the same C- and Ku-bands, and following the same methodology it had the ability to measure sea-surface height to an improved accuracy of 3.3 cm. It made observations for 12 years, and was also overlapped by its successor Jason-2.

Jason-2 was launched on the 20 June 2008. This satellite carried a CNES Poseidon-3 Altimeter with C- and Ku-bands with the intention of measuring sea height to within 2.5cm. With Jason-2, National Oceanic and Atmospheric Administration (NOAA) and the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) took over the management of the data. The satellite is still active, however due to suspected radiation damage its orbit was lowered by 27 km, enabling it to produce an improved, high-resolution estimate of Earth’s average sea surface height, which in turn will help improve the quality of maps of the ocean floor.

Following the established pattern, Jason-3 was launched on the 17th January 2016. It’s carrying a Poseidon-3B radar altimeter, again using the same C and Ku bands and on a ten day revisit cycle.

Together these missions have provided a 25 year dataset on sea surface height, which has been used for applications such as:

  • El Niño and La Niña forecasting
  • Extreme weather forecasting for hurricanes, floods and droughts
  • Ocean circulation modelling for seasons and how this affects climate through by moving heat around the globe
  • Tidal forecasting and showing how this energy plays an important role in mixing water within the oceans
  • Measurement of inland water levels – at Pixalytics we have a product that we have used to measure river levels in the Congo and is part of the work we are doing on our International Partnership Programme work in Uganda.

In the future, the dataset will be taken forward by the Jason Continuity of Service (Jason-CS) on the Sentinel-6 ocean mission which is expected to be launched in 2020.

Overall, altimetry data from this series of missions is a fantastic resource for operational oceanography and inland water applications, and we look forward to its next twenty five years!

Supporting Soil Fertility From Space

Sentinel-2 pseudo-true colour composite from 2016 with a Kompsat-3 Normalized Difference Vegetation Index (NDVI) product from 2015 inset. Sentinel data courtesy of ESA/Copernicus.

Last Tuesday I was at the academic launch event for the Tru-Nject project at Cranfield University. Despite the event’s title, it was in fact an end of project meeting. Pixalytics has been involved in the project since July 2015, when we agreed to source and process high resolution satellite Earth Observation (EO) imagery for them.

The Tru-Nject project is funded via Innovate UK. It’s official title is ‘Tru-Nject: Proximal soil sensing based variable rate application of subsurface fertiliser injection in vegetable/ combinable crops’. The focus is on modelling soil fertility within fields, to enable fertiliser to be applied in varying amounts using point-source injection technology which reduces the nitrogen loss to the atmosphere when compared with spreading fertiliser on the soil surface.

To do this the project created soil fertility maps from a combination of EO products, physical sampling and proximal soil sensing – where approximately 15 000 georeferenced hyperspectral spectra are collected using an instrument connected to a tractor. These fertility maps are then interpreted by an agronomist, who decides on the relative application of fertiliser.

Initial results have shown that applying increased fertiliser to areas of low fertility improves overall yield when compared to applying an equal amount of fertiliser everywhere, or applying more fertiliser to high yield areas.

Pixalytics involvement in the work focussed on acquiring and processing, historical, and new, sub 5 metre optical satellite imagery for two fields, near Hull and York. We have primarily acquired data from the Kompsat satellites operated by the Korea Aerospace Research Institute (KARI), supplemented with WorldView data from DigitalGlobe. Once we’d acquired the imagery, we processed it to:

  • remove the effects of the atmosphere, termed atmospheric correction, and then
  • converted them to maps of vegetation greenness

The new imagery needed to coincide with a particular stage of crop growth, which meant the satellite data acquisition period was narrow. This led to a pleasant surprise for Dave George, Tru-Nject Project Manager, who said, “I never believed I’d get to tell a satellite what to do.’ To ensure that we collected data on specific days we did task the Kompsat satellites each year.

Whilst we were quite successful with the tasking the combination of this being the UK, and the fact that the fields were relatively small, meant that some of the images were partly affected by cloud. Where this occurred we gap-filled with Copernicus Sentinel-2 data, it has coarser spatial resolution (15m), but more regular acquisitions.

In addition, we also needed to undertake vicarious adjustment to ensure that we produced consistent products over time whilst the data came from different sensors with different specifications. As we cannot go to the satellite to measure its calibration, vicarious adjustment is a technique which uses ground measurements and algorithms to not only cross-calibrate the data, but also adjusts for errors in the atmospheric correction.

An example of the work is at the top, which shows a Sentinel-2 pseudo-true colour composite from 2016 with a Kompsat-3 Normalized Difference Vegetation Index (NDVI) product from 2015 inset. The greener the NDVI product the more green the vegetation is, although the two datasets were collected in different years so the planting within the field varies.

We’ve really enjoyed working with Stockbridge Technology Centre Ltd (STC), Manterra Ltd, and Cranfield University, who were the partners in the project. Up until last week all the work was done via telephone and email, and so it was great to finally meet them in-person, hear about the successful project and discuss ideas for the future.

Landsat Turns 45!

False colour image of Dallas, Texas. The first fully operational Landsat image taken on July 25, 1972, Image courtesy: NASA’s Earth Observatory

Landsat has celebrated forty-five years of Earth observation this week. The first Landsat mission was Earth Resources Technology Satellite 1 (ERTS-1), which was launched into a sun-synchronous near polar orbit on the 23 July 1972. It wasn’t renamed Landsat-1 until 1975. It had an anticipated life of 1 year and carried two instruments: the Multi Spectral Scanner (MSS) and the Return-Beam Vidicon (RBV).

The Landsat missions have data continuity at their heart, which has given a forty-five year archive of Earth observation imagery. However, as technological capabilities have developed the instruments on consecutive missions have improved. To demonstrate and celebrate this, NASA has produced a great video showing the changing coastal wetlands in Atchafalaya Bay, Louisiana, through the eyes of the different Landsat missions.

In total there have been eight further Landsat missions, but Landsat 6 failed to reach its designated orbit and never collected any data. The missions have been:

  • Landsat 1 launched on 23 July 1972.
  • Landsat 2 launched on 22 January 1975.
  • Landsat 3 was launched on 5 March 1978.
  • Landsat 4 launched on 16 July 1982.
  • Landsat 5 launched on 1 March 1984.
  • Landsat 7 launched on 15 April 1999, and is still active.
  • Landsat 8 launched on 11 February 2013, and is still active.

Landsat 9 is planned to be launched at the end 2020 and Landsat 10 is already being discussed.

Some of the key successes of the Landsat mission include:

  • Over 7 million scenes of the Earth’s surface.
  • Over 22 million scenes had been downloaded through the USGS-EROS website since 2008, when the data was made free-to-access, with the rate continuing to increase (Campbell 2015).
  • Economic value of just one year of Landsat data far exceeds the multi-year total cost of building, launching, and managing Landsat satellites and sensors.
  • Landsat 5 officially set a new Guinness World Records title for the ‘Longest-operating Earth observation satellite’ with its 28 years and 10 months of operation when it was decommissioned in December 2012.
  • ESA provides Landsat data downlinked via their own data receiving stations; the ESA dataset includes data collected over the open ocean, whereas USGS does not, and the data is processed using ESA’s own processor.

The journey hasn’t always been smooth. Although established by NASA, Landsat was transferred to the private sector under the management of NOAA in the early 1980’s, before returning to US Government control in 1992. There have also been technical issues, the failure of Landsat 6 described above; and Landsat 7 suffering a Scan Line Corrector failure on the 31st May 2003 which means that instead of mapping in straight lines, a zigzag ground track is followed. This causes parts of the edge of the image not to be mapped, giving a black stripe effect within these images; although the centre of the images is unaffected the data overall can still be used.

Landsat was certainly a game changer in the remote sensing and Earth observation industries, both in terms of the data continuity approach and the decision to make the data free to access. It has provided an unrivalled archive of the changing planet which has been invaluable to scientists, researchers, book-writers and businesses like Pixalytics.

We salute Landsat and wish it many more years!

Pixalytics: Five Years & Thriving!

Background Image: Sutichak Yachaingham / 123 Stock Photo

The start of June marked the five-year anniversary of Pixalytics!

For a small start-up business, like ours, five years is an important milestone. Depending on which you report you believe only around 50%, or even 40%, of new small business survive their five years! So we should definitely celebrate the fact that we’re still here!

The last twelve months have been successful for us. Our key highlights have included:

  • Continuing to grow our income year-on-year
  • Expanded our team to five, soon to be six, employees – which is a 100% increase over the last year!
  • Moved to a new office on Plymouth Science Park
  • Part of a consortium developing a Drought and Flood Mitigation Service (DFMS) in Uganda.
  • Secured our first European Contract and so now we are exporters!

It has been a lot of hard work, but we’re really pleased with what we’ve achieved.

In a similar blog last year, we wrote about our target of releasing an innovative series of automated Earth Observation products and services. You’ll have noticed that this is not listed in our highlights, as despite our efforts we’ve not managed to do this … yet.

We have made significant progress with our eStore. We have a number of products almost ready to go, the product interface has been developed and we’re currently developing the front end eCommerce website. We’re intending to go live with flooding, turbidity and ocean colour products. So watch this space, things will be happening later this year – we hope!

Launching the products is really the easy bit, the difficult part will be getting people to buy them and this a challenge which firms much larger than us are still to effectively solve. As a small business we tend to market through our website, social media and the odd exhibition. However, we’ll need to come up with some new cost-effective innovative ideas for our eStore if it is to be successful. We’re also participating in Europe wide projects established by EARSC and the Copernicus World Alliance looking at ways of developing the market and promoting Earth Observation products and services.

For the last couple of years we’ve quoted a phrase from ‘Worstward Ho’, a monologue by Samuel Beckett which is ‘Ever tried. Ever failed. No matter. Try Again. Fail again. Fail better.’

This sums up our approach. We try things. If they don’t work out, we try something else. It’s worked okay so far.

Before we leave our five year celebration, we wanted to take the opportunity to thank all of the people who’ve helped us along our journey, including the readers of our blog.

Let’s hope we’re still here in another five years!

World Oceans Day

Phytoplankton Bloom off South West England. Acquired by MODIS on 12th June 2003. Data courtesy of NASA.

June 8th is World Oceans Day. This is an annual global celebration of the oceans, their importance and how they can be protected for the future.

The idea of a World Ocean Day was originally proposed by the Canadian Government at the Earth Summit in Rio in 1992. In December 2008 a resolution was passed by United Nations General Assembly which officially declared that June 8th would be World Oceans Day. The annual celebration is co-ordinated by the Ocean Project organisation, and is growing from strength to strength with over 100 countries having participated last year.

There is a different theme each year and for 2017 it’s “Our Oceans, Our Future”, with a focus on preventing plastic pollution of the ocean and cleaning marine litter.

Why The Oceans Are Important?

  • The oceans cover over 71% of the planet and account for 96% of the water on Earth.
  • Half of all the oxygen in the atmosphere is released by phytoplankton through photosynthesis. Phytoplankton blooms are of huge interest to us at Pixalytics as despite their miniscule size, in large enough quantities, phytoplankton can be seen from space.
  • They help regulate climate by absorbing around 25% of the CO2 human activities release into the atmosphere.
  • Between 50% and 80% of all life on the planet is found in the oceans.
  • Less than 10% of the oceans have been explored by humans. More people have stood on the moon than the deepest point of the oceans – the Mariana Trench in the Pacific Ocean at around 11 km deep.
  • Fish accounted for about 17% of the global population’s intake of animal protein in 2013.

Why This Year’s Theme Is Important?

The pollution of the oceans by plastic is something which affects us all. From bags and containers washed up on beaches to the plastic filled garbage gyres that circulate within the Atlantic, Pacific and Indian Oceans, human activity is polluting the oceans with plastic and waste. The United Nations believe that as many as 51 trillion particles of microplastic are in the oceans, which is a huge environmental problem.

Everyone will have seen images of dolphins, turtles or birds either eating or being trapped by plastic waste. However, recently Dr Richard Kirby – a friend of Pixalytics – was able to film plastic microfibre being eaten by plankton. As plankton are, in turn, eaten by many marine creatures, this is one example of how waste plastic is entering the food chain. The video can seen here on a BBC report.

Dr Kirby also runs the Secchi Disk project which is a citizen science project to study phytoplankton across the globe and receives data from every ocean.

Get Involved With World Oceans Day

The world oceans are critical to the health of the planet and us! They help regulate climate, generate most of the oxygen we breathe and provide a variety of food and sources of medicines. So everyone should want to help protect and conserve these natural environments. They are a number of ways you can get involved:

  • Participate: There are events planned all across the world. You can have a look here and see if any are close to you.
  • Look: The Ocean Project website has a fantastic set of resources available.
  • Think: Can you reduce your use, or reliance on plastic?
  • Promote: Talk about World Oceans Day, Oceans and their importance.

Beware of the Bluetooth Gnomes and Other Stories from GISRUK 2017

Gorton Monastry, GISRUK 2017

The 2017 GIS Research UK (GISRUK) Conference took place last week in Manchester, and Pixalytics sponsored the Best Early-Career Researcher Prize.

I was looking forward to the event, but I nearly didn’t get there! I was planning to catch the train up from London on Wednesday. However, the trackside fire at Euston station put paid to that, as my train was cancelled. Instead I was at the station bright and early on Thursday morning.

The first presentation I saw was the inspiring keynote by Professor Andrew Hudson-Smith. He talked about ‘getting work out there and used’ and using the Internet of Things to create a ‘census of now’ i.e., rather than having census data a number of years out-of-date, collect it all of the time. Personally, I also enjoyed hearing about his Bluetooth gnomes in Queen Elizabeth Olympic Park, which talk to you about cyber security. A visit to his gnomes is definitely on my list for the next spare weekend in London!

I spent the rest of the afternoon in the Infrastructure stream of presentations where there were talks on spatially modelling the impact of hazards (such as flooding) on the National Grid network, human exposure to hydrocarbon pollution in Nigeria, deciding where to site, and what type of, renewable energy and investigating taxi journeys.

In the evening, the conference dinner was at ‘The Monastery’, also known as Gorton Monastery. Despite the name, it was actually a friary built by the Franciscan monks who travelled to Manchester in 1861 to serve the local Catholic community. It was one of the first churches to be completed by the Franciscans in England after the Reformation. It became derelict in the mid 1990’s and ended up on the World Monuments Fund Watch List of 100 Most Endangered Sites in the World. Since then it has been restored and is used as a spectacular community venue.

Friday started with the morning parallel sessions, and I picked ‘Visualisation’ followed by ‘Machine Learning’. Talks included ‘the Curse of Cartograms’ (and if you don’t know what these curses are, have a look here!), land-use mapping and tracking behaviour at music festivals using mobile phone generated data – which won the best spatial analysis paper. However, my favourite talk was given by Gary Priestnall on the projection augmented relief models, which use physical models of a location’s terrain that are then overlaid with imagery/videos shown using a projector. The effect was fantastic!

Our closing keynote, ‘The Great Age of Geography 2017’, was from Nick Crane, known to UK TV viewers as the ‘map man’. He reflected on the role of geographers throughout history and then into the future. He equated the breakthrough in printing, from wood blocks to copper plates that could be engraved in more detail and updated, to today’s transition from analogue to digital.

The conference finished with the awards. I was delighted to present Alyson Lloyd and James Cheshire with the Best Early-Career Researcher Prize for their presentation on ‘Challenges of Big Data for Social Science: Addressing Uncertainty in Loyalty Card Data’. Unfortunately, as it was on Wednesday afternoon, it wasn’t one I’d seen personally. However, I’ve downloaded the conference paper, available from here, and I’m look forward to reading it.

It was an excellent conference, and I was really enjoyed my time in Manchester. Looking forward to GISRUK 2018!

Brexit Biting for UK Space Industry

Artist's rendition of a satellite - mechanik/123RF Stock Photo

Artist’s rendition of a satellite – mechanik/123RF Stock Photo

UK companies involved in European Commission space programmes face an uncertain future according to media reports over the last week. The Financial Times reported that the European Commission wanted two key clauses in the contracts for work on the next part of the €10 bn Galileo Satellite Navigation System. These would allow the Commission to:

  • Cancel the contracts, without penalty, of any supplier who is no longer based in an European Union (EU) member state; and then
  • Charge that supplier all costs associated with finding their replacements.

Clearly, this poses a huge risk to UK companies given the fact that the UK has indicated its intention to leave the EU in 2019 by triggering Article 50. We wrote about the potential impacts of Brexit last year, and whilst we did pick up concerns over Galileo we didn’t see this coming!

Should the UK Space Industry be concerned?
Yes!

Despite reports to the contrary, this does not mean we are leaving the European Space Agency (ESA). We are very much remaining part of ESA, something that was confirmed at the ministerial in December. This solely relates to programmes owned, and funded, by the European Union (EU). However, it is concerning for two key reasons:

  • Anyone who has tried to negotiate contract terms with large governmental organisations will be aware that it tends to be a binary take it or leave it scenario. Therefore, if these clauses are in the contract, then it is highly likely companies will have to sign up to them to get the work.
  • It may not just be Galileo, the Copernicus Programme could be next. Copernicus is also an EU programme, and therefore it has to be a possibility that they may apply the same clauses to future Copernicus tenders. Galileo isn’t something Pixalytics is involved with, but if this was extended to Copernicus we’d be potentially impacted and would need to make choices.

What Can UK Companies Do?
The options are limited:

  • Bid anyway! Accept the potential financial risk, or hope that it will get resolved within the various Brexit negotiations. Given the size of these contracts, it will be a brave CEO who goes down this route.
  • Not bidding for any Galileo contract is probably the financially prudent option, but equally it removes a significant revenue stream.
  • Move to another European Country. I think there will be a number of companies who will be looking at moving some, or all, of their operations to another EU member state.

Any Causes For Optimism?
Not really, but there are tiny strands of hope.

  • Security – A key issue with Galileo is security. Currently, all EU members have agreements on security and when the UK leaves the EU, it leaves that agreement. Of course, security is just one of hundreds of agreements the UK will be hoping to discuss with the EU through Brexit negations. If security agreements are reached with the UK, maybe the position will change.
  • UK Election – Whilst writing this blog, the UK Prime Minister has announced a General Election in June. Parliamentary changes may influence the type of Brexit we have, but again it is highly unlikely.

It was fairly obvious, despite the contrary political rhetoric, that Brexit would have huge consequences on the UK’s relationship with Europe.

The UK’s space industry looks as though it will be at the forefront of those consequences. Forget 2019, the bite of Brexit is being felt today!

Pixalytics Goes To Space … Well, Nearly!

Last week the Pixalytics name got lifted towards space! In a previous blog we described how we were supporting the Plymouth University Space Society launching a weather balloon.

After a number of attempts were thwarted by the wind and weather patterns of Plymouth, last Friday was the big day. A small band of the Space Society pioneers alongside myself and Howard from Salcombe Gin, spent half an hour battling to control a weather balloon in the wind as it was pumped full of gas and had a small Pixalytics branded payload attached including a Go-Pro Camera, balloon locator, various battery packs and a small bottle of Salcombe Gin. At the top of the blog is an image of the gin high above Plymouth.

Once we were ready, the balloon was carefully walked back a few paces, and then with our hearts in our mouths, it was launched! We watched it rise gloriously until it disappeared into the low cloud that was covering the city. For anyone who wants to see the launch, it was filmed and streamed on Facebook and the recording can be found here.

Once the launch euphoria had subsided, the Space Society team jumped into a car to follow the balloon towards the predicted landing site of Taunton. The payload had a device inside which when called replied with the balloon’s location to enable progress to be tracked. The balloon actually ended up around thirty miles to the east of the prediction, coming to rest back on Earth in Yeovil. Once they got close, the team had to ask an elderly resident for permission to look through her garden for the payload package. However, it was a success and the payload was retrieved!!

On examination of the footage, sadly the Go-Pro seemed to malfunction about 15 minutes into the flight and therefore we were not able to get full flight footage. However, this is the space industry and not everything goes to plan. Once you launch most things are out of your hands!

From the flight length and distance travelled the Space Society team estimate that the balloon went up above 32,000 m. Whilst that is only about one third of the way to the Karman line, which sits around 100,000m and is commonly viewed as the boundary between the Earth’s atmosphere and the outer space, it’s probably the highest point the Pixalytics name will ever get!

Readers will be aware that we do like the unusual marketing opportunity. We’ve previously had our name going at 100 miles per hour aboard a Caterham Formula One car, so who knows what might be next?

It was great to support local students with their adventure towards space, and hopefully it will inspire them to get a job in our industry and develop their own space career!

Supporting Uganda’s Farmers

Map of Uganda showing vegetation productivity. Underlying data is the MODIS 2014 NPP Product, MOD17 – Zhoa et al. (2005).

Uganda is a landlocked country of just over 240,000 square kilometres. Agriculture is a key element of the country’s economy and was responsible for 23% of gross domestic product in 2011 and almost half the country’s exports the following year. According to the Food & Agriculture Organisation of the United Nations, 80% of the population relies on farming for its livelihood.

It has an equatorial climate, with regional variations, although recent recurrent dry spells have impacted on crop and livestock productivity. Pixalytics is delighted to be part of a consortium led by the RHEA Group, working with the Ugandan Ministry of Water and Environment and local NGOs to develop a Drought and Flood Mitigation Service (DFMS) to give practical information to help local communities respond to the effects of climate change.

Using computer models populated with satellite, meteorological, water resources and ground based data an innovative Environment Early Warning Platform will be developed to provide Ugandan farmers, via local NGO organisations, with forecasts throughout the growing seasons to enable them to take actions to maximise their crop yield.

Pixalytics, along with fellow consortium member, Environment Systems, are responsible for the Earth Observation data in the project. We’ll be looking at variety of optical and radar data to provide information about flood and drought conditions alongside crops and their growing conditions.

The project should benefit local communities by:

  • Improving the ability to forecast and mitigate droughts and floods on a local actionable scale.
  • Allowing NGOs to target resources saving time, money and lives.
  • Allowing farmers to improve their lives and better protect their livestock and crops.

Alongside ourselves, and RHEA Group, our consortium includes Environment Systems, Databasix, AA International, AgriTechTalk International, HR Wallingford, UK Met Office, Mercy Corps, and Oxford Policy Management. We will also work with international partners, including the Uganda Government Ministries, Kakira Sugar Company, and the NGO Green Dreams/iCOW. The first of a number of visits to Uganda took place last week, where we had the opportunity to make lots of local contacts and meet some of those whom we hope to benefit from this work.

This work is part of the UK Space Agency’s International Partnership Programme and ours is one of 21 projects chosen to provide solutions to local issues in counties across Africa, Asia, Central and South America.

This is a really exciting project to be involved with, and we’re looking forward to providing useful information to local farmers to allow them to take real and meaningful action to enhance the productivity, and protection, of their livestock and crops.