First Light Images

Mosaic image of The Netherlands created using three Sentinel-1 scans in March 2015.
Data Courtesy of Copernicus Sentinel data (2015)/ESA.

Two of the satellites launched on 12th January by the Indian Space Research Organization (ISRO) have released their first images. We wrote about the launch two weeks ago, and wanted to follow up on their initial outputs.

The first is the exciting ICEYE-X1, which is both the world’s first synthetic-aperture radar (SAR) microsatellite and Finland’s first commercial satellite. We currently use Sentinel-1 SAR imagery for some of Pixalytics flooding and water extent mapping products and so are really interested to see what this satellite produces.

One of the key advantages of radar satellites over optical ones is that they can capture images both during day and night, and are not hampered by the presence of clouds.  However, using a different part of the electromagnetic spectrum to optical satellites means that although it is black and white image it’s sometimes easier to distinguish objects within it.

Zoomed in portion of Netherlands mosaic image created using three Sentinel-1 scans in March 2015.
Data Courtesy of Copernicus Sentinel data (2015)/ESA.

For example, the image to the left is a zoomed in portion of Sentinel-1 mosaic of the Netherlands acquired in March 2015 where you can clearly see couple of off-shore windfarms.

Sentinel-1 is a twin satellite constellation and uses a C-Band SAR on board two identical satellites. Over land it captures data in an Interferometric Wide swath mode, which means it takes three scans and then combines them into a single image. Each scan has a width of 250 km and a spatial resolution of 5 m x 20 m, with a six day repeat cycle for an area of land.

In comparison, ICEYE-X1 produced its first image with a spatial resolution of 10 m, and it’s hoped to reduce this down to 3 m. It issued its first image on Monday 15th January, three days after launch, showing part of Alaska, including the Noatak National Preserve, with a ground coverage of approximately 80 km by 40 km. The image can be seen here.

ICEYE-X1 weighs in at under a 100 kg, which is less than a twentieth of Sentinel-1 which weighed in at 2 300kg. This size reduction produces a high reduction in the cost too, with estimates suggesting it only cost ICEYE around a hundredth of the €270 million price of the second Sentinel-1 satellite.

By 2020 ICEYE is hoping to establish a global imaging constellation of six SAT microsatellites that will be able to acquire multiple images of the same location on Earth each day. After this, the company has ambitions of launching 18 SAR-enabled microsatellites to bring reliable high temporal-resolution images which would enable every point on the Earth to be captured eight times a day.

Cartosat-2F also sent its first image on the 15th January. The image, which can be found here, is of the city of Indore, in the Indian state of Madhya Pradesh. The Holkar Stadium is tagged in the centre, a venue which has previously hosted test Cricket. The satellite carries a high resolution multi-spectral imager with 1 m spatial resolution and a swath width of 10 km.

It is the seventh satellite in the Cartosat series which began in 2007, the others are:

  • Cartosat 2 launched on 10th January 2007
  • Cartosat 2A launched on 28th April 2008
  • Cartosat 2B launched on 12th July 2010
  • Cartosat 2C launched on 22nd June 2016
  • Cartosat 2D launched on 15th February 2017
  • Cartosat 2E launched on 23rd June 2017

These two satellites are just at the start of their journey, and it will be interesting to see what amazing images they capture in the future.

Big Data From Space

Last week I attended the 2017 Conference on Big Data from Space (BiDS’17) that was held in Toulouse, France. The conference was co-organised by the European Space Agency (ESA), the Joint Research Centre (JRC) of the European Commission (EC), and the European Union Satellite Centre (SatCen). It aimed to bring together people from multiple disciplines to stimulate the exploitation Earth Observation (EO) data collected in space.

The event started on Tuesday morning with keynotes from the various co-organising space organisations. Personally, I found the talk by Andreas Veispak, from the European Commission’s (EC) DG GROW department which is responsible for EU policy on the internal market, industry, entrepreneurship and SMEs, particularly interesting. Andreas has a key involvement in the Copernicus and Galileo programmes and described the Copernicus missions as the first building block for creating an ecosystem, which has positioned Europe as a global EO power through its “full, free and open” data policy.

The current Sentinel satellite missions will provide data continuity until at least 2035 with huge amounts of data generated, e.g., when all the Sentinel satellite missions are operational over 10 petabytes of data per year will be produced. Sentinel data has already been a huge success with current users exceeding what was expected by a factor of 10 or 20 and every product has been downloaded at least 10 times. Now, the key challenge is to support these users by providing useful information alongside the data.

The ESA presentation by Nicolaus Hanowski continued the user focus by highlighting that there are currently over 100 000 registered Copernicus data hub users. Nicolaus went on to describe that within ESA success is now being measured by use of the data for societal needs, e.g., the sustainable development goals, rather than just the production of scientific data. Therefore, one of the current aims is reduce the need for downloading by having a mutualised underpinning structure, i.e. the Copernicus Data and Information Access Services (DIAS) that will become operational in the second quarter of 2018, which will allow users to run their computer code on the data without the need for downloading. The hope is that this will allow users to focus on what they can do with the data, rather than worrying around storing it!

Charles Macmillan from JRC described their EO Data and Processing Platform (JEODPP) which is a front end based around the Jupyter Notebook that allows users to ask questions using visualisations and narrative text, instead of just though direct programming. He also noted that increasingly the data needed for policy and decision making is held by private organisations rather than government bodies.

The Tuesday afternoon was busy as I chaired the session on Information Generation at Scale. We had around 100 people who heard some great talks on varied subjects such as mass processing of Sentinel & Landsat data for mapping human settlements, 35 years of AVHRR data and large scale flood frequency maps using SAR data.

‘Application Of Earth Observation To A Ugandan Drought And Flood Mitigation Service’ poster

I presented a poster at the Wednesday evening session, titled “Application Of Earth Observation To A Ugandan Drought And Flood Mitigation Service”. We’re part of a consortium working on this project which is funded via the UK Space Agency’s International Partnership Programme. It’s focus is on providing underpinning infrastructure for the Ugandan government so that end users, such as farmers, can benefit from more timely and accurate information – delivered through a combination of EO, modelling and ground-based measurements.

It was interesting to hear Grega Milcinski from Sinergise discuss a similar approach to users from the lessons they learnt from building the Sentinel Hub. They separated the needs of science, business and end users. They’ve chosen not to target end users due to the challenges surrounding the localisation and customisation requirements of developing apps for end users around the world. Instead they’ve focussed on meeting the processing needs of scientific and business users to give them a solid foundation upon which they can then build end user applications. It was quite thought provoking to hear this, as we’re hoping to move towards targeting these end users in the near future!

There were some key technology themes that came of the presentations at the conference:

  • Jupyter notebooks were popular for frontend visualisation and data analytics, so users just need to know some basic python to handle large and complex datasets.
  • Making use of cloud computing using tools such as Docker and Apache Spark for running multiple instances of code with integrated parallel processing.
  • Raw data and processing on the fly: for both large datasets within browsers and by having the metadata stored so you can quickly query before committing to processing.
  • Analysis ready data in data cubes, i.e. the data has been processed to a level where remote sensing expertise isn’t so critical.

It was a great thought provoking conference. If you’d like to get more detail on what was presented then a book of extended abstracts is available here. The next event is planned for 19-21 February 2019 in Munich, Germany and I’d highly recommend it!

Looking To Earth Observation’s Future

Artist’s view of Sentinel-3. Image courtesy of ESA–Pierre Carril.

The future is very much the theme for Earth Observation (EO) in Europe this week.

One of the biggest potential impacts for the industry could come out of a meeting that took place yesterday, 7 November, in Tallinn, Estonia as part of European Space Week. It was a meeting between the European Union (EU) and the European Space Agency (ESA) to discuss the next steps for the Copernicus programme beyond 2020. This is important in terms of not only continuing the current Sentinel missions, but also expanding what is monitored. There are concerns over gaps in coverage for certain types of missions which Europe could help to fill.

As an EO SME we’re intrigued to see the outcomes of these discussions as they include a focus on how to leverage Copernicus data more actively within the private sector. According to a recent Industry Survey by the European Association of Remote Sensing Companies (EARSC), there are just over 450 EO companies operating in Europe, and 66% of these are micro companies like Pixalytics – defined by having less than ten employees. This rises to 95% of all EO European companies if you include small businesses – with between 10 and 50 employees.

Therefore, if the EU/ESA is serious about developing the entrepreneurial usage of Copernicus data, it will be the small and micro companies that will make the difference. As these companies grow, they will need high skilled employees to support them.

Looking towards the next generation of EO scientists, the UK Space Agency announced seven new outreach projects this week inspire children to get involved in space specifically and more widely, to increase interest in studying science, technology, engineering and mathematics (STEM) subjects. The seven projects are:

  1. Glasgow Science Festival: Get me into orbit!
  2. Triathlon Trust: Space to Earth view
  3. Mangorolla CIC: Space zones ‘I’m a Scientist’ and ‘I’m an Engineer’
  4. Institute for Research in Schools: MELT: Monitoring the Environment, Learning for Tomorrow
  5. The Design and Technology Association: Inspiring the next generation: design and technology in space
  6. European Space Education Resource Office-UK: James Webb Space Telescope: Design challenge
  7. Children’s Radio UK (Fun Kids): Deep Space High – UK Spaceports

There will be a total of £210,000 invested in these. We’re particularly excited to see the MELT project which will get students to use EO data to analyse what is happening at the two poles.

Each of these elements will help shape the EO industry in this country. With the UK committed to remaining within ESA, decisions on the future of the Copernicus programme will provide a strong strategic direction for both the space and EO industries in Europe. Delivering on that direction will require the next generation workforce who will come from the children studying STEM subjects now.

Both the strategic direction, and associated actions to fulfil those ambitions, are vital for future EO success.

Inspiring the Next Generation of EO Scientists

Artist's rendition of a satellite - 3dsculptor/123RF Stock Photo

Artist’s rendition of a satellite – 3dsculptor/123RF Stock Photo

Last week, whilst Europe’s Earth Observation (EO) community was focussed on the successful launch of Sentinel-5P, over in America Tuesday 10th October was Earth Observation Day!

This annual event is co-ordinated by AmericaView, a non-profit organisation, whose aim to advance the widespread use of remote sensing data and technology through education and outreach, workforce development, applied research, and technology transfer to the public and private sectors.

Earth Observation Day is a Science, Technology, Engineering, and Mathematics (STEM) event celebrating the Landsat mission and its forty-five year archive of imagery. Using satellite imagery provides valuable experience for children in maths and sciences, together with introducing subjects such as land cover, food production, hydrology, habitats, local climate and spatial thinking. The AmericaView website contains a wealth of EO materials available for teachers to use, from fun puzzles and games through to a variety of remote sensing tutorials. Even more impressive is that the event links schools to local scientists in remote sensing and geospatial technologies. These scientists provide support to teachers including giving talks, helping design lessons or being available to answer student’s questions.

This is a fantastic event by AmericaView, supporting by wonderful resources and remote sensing specialists. We first wrote about this three years ago, and thought the UK would benefit from something similar. We still do. The UK Space Agency recently had an opportunity for organisations interested in providing education and outreach activities to support EO, satellite launch programme or the James Webb Space Telescope. It will be interesting to see what the successful candidates come up with.

At Pixalytics we’re passionate about educating and inspiring the next generation of EO scientists. For example, we regularly support the Remote Sensing and Photogrammetry Society’s Wavelength conference for students and early career scientists; and sponsored the Best Early-Career Researcher prize at this year’s GISRUK Conference. We’re also involved with two exciting events at Plymouth’s Marine Biological Association, a Young Marine Biologists (YMB) Summit for 12-18 year olds at the end of this month and their 2018 Postgraduate conference.

Why is this important?
The space industry, and the EO sector, is continuing to grow. According to Euroconsult’s ‘Satellites to Be Built & Launched by 2026 – I know this is another of the expensive reports we highlighted recently – there will be around 3,000 satellites with a mass above 50 kg launched in the next decade – of which around half are anticipated as being used for EO or communication purposes. This almost doubles the number of satellites launched in the last ten years and doesn’t include the increasing number of nano and cubesats going up.

Alongside the number of satellites, technological developments mean that the amount of EO data available is increasing almost exponentially. For example, earlier this month World View successfully completed multi-day flight of its Stratollite™ service, which uses high-altitude balloons coupled with the ability to steer within stratospheric winds. They can carry a variety of sensors, a mega-pixel camera was on the recent flight, offering an alternative vehicle for collecting EO data.

Therefore, we need a future EO workforce who are excited, and inspired, by the possibilities and who will take this data and do fantastic things with it.

To find that workforce we need to shout about our exciting industry and make sure everyone knows about the career opportunities available.

No Paraskevidekatriaphobia For Sentinel-5P!

Sentinel-5P carries the state-of-the-art Tropomi instrument. Image courtesy of ESA/ATG medialab.

On Friday the latest of the Sentinel satellites, Sentinel-5P, is due to be launched at 09.27 GMT from Plesetsk Cosmodrome in Russia.

Friday is the 13th October, and within parts of the western world this is considered to be an unlucky date – although in Italy its Friday 17th which is unlucky and in some Spanish speaking countries it is Tuesday the 13th. Fear of Friday 13th is known as paraskevidekatriaphobia, although evidently it isn’t something Sentinel-5P worries about!

Sentinel-5 Precursor, to give the full title, is dedicated to monitoring our atmosphere. It will create maps of the various trace gases such as nitrogen dioxide, ozone, formaldehyde, sulphur dioxide, methane and carbon monoxide alongside aerosols in our atmosphere. The mission will also support the monitoring of air pollution over cities, volcanic ash, stratospheric ozone and surface UV radiation.

An internal view of the Copernicus Sentinel-5P satellite. Image courtesy of ESA/ATG medialab.

The satellite itself is a hexagonal structure as can be seen in the image to the right. It has three solar wings which will be deployed once the polar sun-synchronous 824 km low earth orbit has been achieved. Sentinel-5P will be orbiting three and half minutes behind NOAA’s Suomi-NPP satellite which carries the Visible/Infrared Imager and Radiometer Suite (VIIRS). This synergy will allow the high resolution cloud mask from VIIRS to be used within the calculations for methane from Sentinel-5P.

Within the hexagonal body the main scientific instrument is the Tropospheric Monitoring Instrument (Tropomi). This is a push-broom imaging spectrometer covering a spectral range from ultraviolet and visible (270–495 nm), near infrared (675–775 nm) and shortwave infrared (2305–2385 nm). The spatial resolution of the instrument will be 7 km x 3.5 km. However, one of the exciting elements of this instrument is that it will have a swath width of 2600 km meaning it can map almost the entire planet every day. It will have full daily surface coverage of radiance and reflectance measurements for latitudes > 7° and < -7°, and better than 95 % coverage for other latitudes.

The key role of Sentinel-5P is to reduce the data gap between the end of the Envisat mission in May 2012 and the launch of Sentinel-5 in 2020. Sentinel-5, and Sentinel-4, will be instruments onboard meteorological satellites operated by Eumetsat and both will be used to monitor the atmosphere.

The timing of Sentinel-5 is interesting for those of within the UK given that almost three quarters of the funding from Copernicus comes from the European Union. By this time Brexit will have occurred and it is currently unclear how that will impact on our future involvement in this programme. This also applies to the work announced at the end of last month to look at an expansion of the Sentinel missions. Invitations to tender (ITT) are due to be issued in the near future, and given our previous blogs on potential limitations and issues, it will be interesting to see which UK companies bid, and whether they will be successful.

Sentinel-5P will help improve our understanding of the processes within the atmosphere which affect our climate, the air we breathe and ultimately the health of everyone on the planet.

Can You See The Great Wall of China From Space?

Area north of Beijing, China, showing the Great Wall of China running through the centre. Image acquired by Sentinel-2 on 27th June 2017. Data courtesy of ESA/Copernicus.

Dating back over two thousand three hundred years, the Great Wall of China winds its way from east to west across the northern part of the country. The current remains were built during Ming Dynasty and have a length of 8 851.8 km according to 2009 work by the Chinese State Administration of Cultural Heritage and National Bureau of Surveying and Mapping Agency. However, if you take into account the different parts of the wall built by other dynasties, its length is almost twenty two thousand kilometres.

The average height of the wall is between six and seven metres, and its width is between four to five metres. This width would allow five horses, or ten men, to walk side by side. The sheer size of the structure has led people to believe that it could be seen from space. This was first described by William Stukeley in 1754, when he wrote in reference to Hadrian’s Wall that ‘This mighty wall of four score miles in length is only exceeded by the Chinese Wall, which makes a considerable figure upon the terrestrial globe, and may be discerned at the Moon.’

Despite Stukeley’s personal opinion not having any scientific basis, it has been repeated many times since. By the time humans began to go into space, it was considered a fact. Unfortunately, astronauts such as Buzz Aldrin, Chris Hatfield and even China’s first astronaut, Yang Liwei, have all confirmed that the Great Wall is not visible from space by the naked eye. Even Pixalytics has got a little involved in this debate. Two years ago we wrote a blog saying that we couldn’t see the wall on Landsat imagery as the spatial resolution was not small enough to be able to distinguish it from its surroundings.

Anyone who is familiar with the QI television series on the BBC will know that they occasionally ask the same question in different shows and give different answers when new information comes to light. This time it’s our turn!

Last week Sam was a speaker at the TEDx One Step Beyond event at the National Space Centre in Leicester – you’ll hear more of that in a week or two. However, in exploring some imagery for the event we looked for the Great Wall of China within Sentinel-2 imagery. And guess what? We found it! In the image at the top, the Great Wall can be seen cutting down the centre from the top left.

Screenshot of SNAP showing area north of Beijing, China. Data acquired by Sentinel-2 on 27th June 2017. Data courtesy of ESA/Copernicus.

It was difficult to spot. The first challenge was getting a cloud free image of northern China, and we only found one covering our area of interest north of Beijing! Despite Sentinel-2 having 10 m spatial resolution for its visible wavelengths, as noted above, the wall is generally narrower. This means it is difficult to see the actual wall itself, but it is possible to see its path on the image. This ability to see very small things from space by their influence on their surroundings is similar to how we are able to spot microscopic phytoplankton blooms. The image on the right is a screenshot from Sentinel Application Platform tool (SNAP) which shows the original Sentinel-2 image of China on the top left and the zoomed section identifying the wall.

So whilst the Great Wall of China might not be visible from space with the naked eye, it is visible from our artificial eyes in the skies, like Sentinel-2.

Algae Starting To Bloom

Algal Blooms in Lake Erie, around Monroe, acquired by Sentinel-2 on 3rd August 2017. Data Courtesy of ESA/Copernicus.

Algae have been making the headlines in the last few weeks, which is definitely a rarely used phrase!

Firstly, the Lake Erie freshwater algal bloom has begun in the western end of the lake near Toledo. This is something that is becoming an almost annual event and last year it interrupted the water supply for a few days for around 400,000 residents in the local area.

An algae bloom refers to a high concentration of micro algae, known as phytoplankton, in a body of water. Blooms can grow quickly in nutrient rich waters and potentially have toxic effects. Although a lot of algae is harmless, the toxic varieties can cause rashes, nausea or skin irritation if you were to swim in it, it can also contaminate drinking water and can enter the food chain through shellfish as they filter large quantities of water.

Lake Erie is fourth largest of the great lakes on the US/Canadian border by surface area, measuring around 25,700 square km, although it’s also the shallowest and at 484 cubic km has the smallest water volume. Due to its southern position it is the warmest of the great lakes, something which may be factor in creation of nutrient rich waters. The National Oceanic and Atmospheric Administration produce both an annual forecast and a twice weekly Harmful Algal Bloom Bulletin during the bloom season which lasts until late September. The forecast reflects the expected biomass of the bloom, but not its toxicity, and this year’s forecast was 7.5 on a scale to 10, the largest recent blooms in 2011 and 2015 both hit the top of the scale. Interestingly, this year NOAA will start incorporating Sentinel-3 data into the programme.

Western end of Lake Erie acquired by Sentinel-2 on 3rd August 2017. Data

Despite the phytoplankton within algae blooms being only 1,000th of a millimetre in size, the large numbers enable them to be seen from space. The image to the left is a Sentinel-2 image, acquired on the 3rd August, of the western side of the lake where you can see the green swirls of the algal bloom, although there are also interesting aircraft contrails visible in the image. The image at the start of the top of the blog is zoomed in to the city of Monroe and the Detroit River flow into the lake and the algal bloom is more prominent.

Landsat 8 acquired this image of the northwest coast of Norway on the 23rd July 2017,. Image courtesy of NASA/NASA Earth Observatory.

It’s not just Lake Erie where algal blooms have been spotted recently:

  • The Chautauqua Lake and Findley Lake, which are both just south of Lake Erie, have reported algal blooms this month.
  • NASA’s Landsat 8 satellite captured the image on the right, a bloom off the northwest coast of Norway on the 23rd July. It is noted that blooms at this latitude are in part due to the sunlight of long summer days.
  • The MODIS instrument onboard NASA’s Aqua satellite acquired the stunning image below of the Caspian Sea on the 3rd August.

Image of the Caspian Sea, acquired on 3rd August 2017, by MODIS on NASA’s Aqua satellite. Image Courtesy of NASA/NASA Earth Observatory.

Finally as reported by the BBC, an article in Nature this week proposes that it was a takeover by ocean algae 650 million years ago which essentially kick started life on Earth as we know it.

So remember, they may be small, but algae can pack a punch!

Silver Anniversary for Ocean Altimetry Space Mission

Artist rendering of Jason-3 satellite over the Amazon.
Image Courtesy NASA/JPL-Caltech.

August 10th 1992 marked the launch of the TOPEX/Poseidon satellite, the first major oceanographic focussed mission. Twenty five years, and three successor satellites, later the dataset begun by TOPEX/Poseidon is going strong providing sea surface height measurements.

TOPEX/Poseidon was a joint mission between NASA and France’s CNES space agency, with the aim of mapping ocean surface topography to improve our understanding of ocean currents and global climate forecasting. It measured ninety five percent of the world’s ice free oceans within each ten day revisit cycle. The satellite carried two instruments: a single-frequency Ku-band solid-state altimeter and a dual-frequency C- and Ku-band altimeter sending out pulses at 13.6 GHz and 5.3 GHz respectively. The two bands were selected due to atmospheric sensitivity, as the difference between them provides estimates of the ionospheric delay caused by the charged particles in the upper atmosphere that can delay the returned signal. The altimeter sends radio pulses towards the earth and measures the characteristics of the returned echo.

When TOPEX/Poseidon altimetry data is combined with other information from the satellite, it was able to calculate sea surface heights to an accuracy of 4.2 cm. In addition, the strength and shape of the return signal also allow the determination of wave height and wind speed. Despite TOPEX/Poseidon being planned as a three year mission, it was actually active for thirteen years, until January 2006.

The value in the sea level height measurements resulted in a succeeding mission, Jason-1, launched on December 7th 2001. It was put into a co-ordinated orbit with TOPEX/Poseidon and they both took measurements for three years, which allowed both increased data frequency and the opportunity for cross calibration of the instruments. Jason-1 carried a CNES Poseidon-2 Altimeter using the same C- and Ku-bands, and following the same methodology it had the ability to measure sea-surface height to an improved accuracy of 3.3 cm. It made observations for 12 years, and was also overlapped by its successor Jason-2.

Jason-2 was launched on the 20 June 2008. This satellite carried a CNES Poseidon-3 Altimeter with C- and Ku-bands with the intention of measuring sea height to within 2.5cm. With Jason-2, National Oceanic and Atmospheric Administration (NOAA) and the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) took over the management of the data. The satellite is still active, however due to suspected radiation damage its orbit was lowered by 27 km, enabling it to produce an improved, high-resolution estimate of Earth’s average sea surface height, which in turn will help improve the quality of maps of the ocean floor.

Following the established pattern, Jason-3 was launched on the 17th January 2016. It’s carrying a Poseidon-3B radar altimeter, again using the same C and Ku bands and on a ten day revisit cycle.

Together these missions have provided a 25 year dataset on sea surface height, which has been used for applications such as:

  • El Niño and La Niña forecasting
  • Extreme weather forecasting for hurricanes, floods and droughts
  • Ocean circulation modelling for seasons and how this affects climate through by moving heat around the globe
  • Tidal forecasting and showing how this energy plays an important role in mixing water within the oceans
  • Measurement of inland water levels – at Pixalytics we have a product that we have used to measure river levels in the Congo and is part of the work we are doing on our International Partnership Programme work in Uganda.

In the future, the dataset will be taken forward by the Jason Continuity of Service (Jason-CS) on the Sentinel-6 ocean mission which is expected to be launched in 2020.

Overall, altimetry data from this series of missions is a fantastic resource for operational oceanography and inland water applications, and we look forward to its next twenty five years!

Supporting Soil Fertility From Space

Sentinel-2 pseudo-true colour composite from 2016 with a Kompsat-3 Normalized Difference Vegetation Index (NDVI) product from 2015 inset. Sentinel data courtesy of ESA/Copernicus.

Last Tuesday I was at the academic launch event for the Tru-Nject project at Cranfield University. Despite the event’s title, it was in fact an end of project meeting. Pixalytics has been involved in the project since July 2015, when we agreed to source and process high resolution satellite Earth Observation (EO) imagery for them.

The Tru-Nject project is funded via Innovate UK. It’s official title is ‘Tru-Nject: Proximal soil sensing based variable rate application of subsurface fertiliser injection in vegetable/ combinable crops’. The focus is on modelling soil fertility within fields, to enable fertiliser to be applied in varying amounts using point-source injection technology which reduces the nitrogen loss to the atmosphere when compared with spreading fertiliser on the soil surface.

To do this the project created soil fertility maps from a combination of EO products, physical sampling and proximal soil sensing – where approximately 15 000 georeferenced hyperspectral spectra are collected using an instrument connected to a tractor. These fertility maps are then interpreted by an agronomist, who decides on the relative application of fertiliser.

Initial results have shown that applying increased fertiliser to areas of low fertility improves overall yield when compared to applying an equal amount of fertiliser everywhere, or applying more fertiliser to high yield areas.

Pixalytics involvement in the work focussed on acquiring and processing, historical, and new, sub 5 metre optical satellite imagery for two fields, near Hull and York. We have primarily acquired data from the Kompsat satellites operated by the Korea Aerospace Research Institute (KARI), supplemented with WorldView data from DigitalGlobe. Once we’d acquired the imagery, we processed it to:

  • remove the effects of the atmosphere, termed atmospheric correction, and then
  • converted them to maps of vegetation greenness

The new imagery needed to coincide with a particular stage of crop growth, which meant the satellite data acquisition period was narrow. This led to a pleasant surprise for Dave George, Tru-Nject Project Manager, who said, “I never believed I’d get to tell a satellite what to do.’ To ensure that we collected data on specific days we did task the Kompsat satellites each year.

Whilst we were quite successful with the tasking the combination of this being the UK, and the fact that the fields were relatively small, meant that some of the images were partly affected by cloud. Where this occurred we gap-filled with Copernicus Sentinel-2 data, it has coarser spatial resolution (15m), but more regular acquisitions.

In addition, we also needed to undertake vicarious adjustment to ensure that we produced consistent products over time whilst the data came from different sensors with different specifications. As we cannot go to the satellite to measure its calibration, vicarious adjustment is a technique which uses ground measurements and algorithms to not only cross-calibrate the data, but also adjusts for errors in the atmospheric correction.

An example of the work is at the top, which shows a Sentinel-2 pseudo-true colour composite from 2016 with a Kompsat-3 Normalized Difference Vegetation Index (NDVI) product from 2015 inset. The greener the NDVI product the more green the vegetation is, although the two datasets were collected in different years so the planting within the field varies.

We’ve really enjoyed working with Stockbridge Technology Centre Ltd (STC), Manterra Ltd, and Cranfield University, who were the partners in the project. Up until last week all the work was done via telephone and email, and so it was great to finally meet them in-person, hear about the successful project and discuss ideas for the future.

If no-one is there when an iceberg is born, does anyone see it?

Larsen C ice Shelf including A68 iceberg. Image acquired by MODIS Aqua satellite on 12th July 2017. Image courtesy of NASA.

The titular paraphrasing of the famous falling tree in the forest riddle was well and truly answered this week, and shows just how far satellite remote sensing has come in recent years.

Last week sometime between Monday 10th July and Wednesday 12th July 2017, a huge iceberg was created by splitting off the Larsen C Ice Shelf in Antarctica. It is one of the biggest icebergs every recorded according to scientists from Project MIDAS, a UK-based Antarctic research project, who estimate its area of be 5,800 sq km and to have a weight of more a trillion tonnes. It has reduced the Larsen C ice Shelf by more than twelve percent.

The iceberg has been named A68, which is a pretty boring name for such a huge iceberg. However, icebergs are named by the US National Ice Centre and the letter comes from where the iceberg was originally sited – in this case the A represents area zero degrees to ninety degrees west covering the Bellingshausen and Weddell Seas. The number is simply the order that they are discovered, which I assume means there have been 67 previous icebergs!

After satisfying my curiosity on the iceberg names, the other element that caught our interest was the host of Earth observation satellites that captured images of either the creation, or the newly birthed, iceberg. The ones we’ve spotted so far, although there may be others, are:

  • ESA’s Sentinel-1 has been monitoring the area for the last year as an iceberg splitting from Larsen C was expected. Sentinel-1’s SAR imagery has been crucial to this monitoring as the winter clouds and polar darkness would have made optical imagery difficult to regularly collect.
  • Whilst Sentinel-1 was monitoring the area, it was actually NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) instrument onboard the Aqua satellite which confirmed the ‘birth’ on the 12th July with a false colour image at 1 km spatial resolution using band 31 which measures infrared signals. This image is at the top of the blog and the dark blue shows where the surface is warmest and lighter blue indicates a cooler surface. The new iceberg can be seen in the centre of the image.
  • Longwave infrared imagery was also captured by the NOAA/NASA Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite on July 13th.
  • Similarly, NASA also reported that Landsat 8 captured a false-colour image from its Thermal Infrared Sensor on the 12th July showing the relative warmth or coolness of the Larsen C ice shelf – with the area around the new iceberg being the warmest giving an indication of the energy involved in its creation.
  • Finally, Sentinel-3A has also got in on the thermal infrared measurement using the bands of its Sea and Land Surface Temperature Radiometer (SLSTR).
  • ESA’s Cryosat has been used to calculate the size of iceberg by using its Synthetic Aperture Interferometric Radar Altimeter (SIRAL) which measured height of the iceberg out of the water. Using this data, it has been estimated that the iceberg contains around 1.155 cubic km of ice.
  • The only optical imagery we’ve seen so far is from the DEMIOS1 satellite which is owned by Deimos Imaging, an UrtheCast company. This is from the 14th July and revealed that the giant iceberg was already breaking up into smaller pieces.

It’s clear this is a huge iceberg, so huge in fact that most news agencies don’t think that readers can comprehend its vastness, and to help they give a comparison. Some of the ones I came across to explain its vastness were:

  • Size of the US State of Delaware
  • Twice the size of Luxembourg
  • Four times the size of greater London
  • Quarter of the size of Wales – UK people will know that Wales is almost an unofficial unit of size measurement in this country!
  • Has the volume of Lake Michigan
  • Has the twice the volume of Lake Erie
  • Has the volume of the 463 million Olympic-sized swimming pools; and
  • My favourite compares its size to the A68 road in the UK, which runs from Darlington to Edinburgh.

This event shows how satellites are monitoring the planet, and the different ways we can see the world changing.