UK Focusing on Agri-tech

Agri-tech has long been seen as an exploitable opportunity for Earth Observation (EO). This was highlighted again last week by Greg Clark MP, the Business Secretary, at his speech at the National Farmers’ Union Conference in Birmingham where he announced a £90 million investment in the agri-tech sector specifically relating to EO, Artificial Intelligence and Robotics.

A definition of agri-tech can be the use of technology to improve agriculture production in terms of yield, efficiency and profitability. Despite all the innovations we’ve had in farming, according to the United Nations, there is still one in nine people in the the world undernourished.

In addition, UNESCO estimates that with the growing global population we’ll need sixty percent more food produced by 2050. Innovative and news ways of working within food production are going to be vital to deliver this level of increase. However, it’s a complex issue. Other critical factors include water demand from agriculture that is already expected to rise by 20% in the coming years, and the agriculture sector is also the largest employer in the world with almost forty percent of the world’s population dependent on it for their livelihoods.

The Government announcement last week recognised the importance of the agriculture industry within this country, as the sector employs four million people and provides £14.3 billion to the national economy. However, we were a little surprised to read that there are half a million jobs solely working in agri-tech in the UK.

The money announced is part of the Industrial Strategy Challenge Fund that was established last year to provide £4.7 billion for research and development to support the Government’s Industrial Strategy. It has a number of challenges and this one is part of Transforming Food Production: From Farm to Fork. Further details are expected, but they have indicated they’re looking to make food production more efficient, productive and sustainable, as well as bringing highly skilled jobs to rural areas and develop some of the exports the UK is likely to need post Brexit.

EO, Artificial Intelligence and Robotics all offer huge possibilities in this area, not only in the food production but also in reducing pollution, waste and land management. For us the EO area is very exciting, and we’ve been involved in the sector for some time. Pixalytics is currently involved in a project in Uganda to support farmers on Drought and Flood Mitigation, and this week Sam is in South America kicking off a project directly supporting rice and palm oil growers.

In addition locally to us, Cornwall has an active agri-tech hub helping small and medium-sized Cornish companies innovate in this sector with support from various academic institutes including Plymouth University who through its Sustainable Earth Institute have projects including robotic systems for automating manual picking operations, developing the manufacture and analysis of artificial soils and the expansion of hydroponic growing environments.

We’ll be keeping an eye on the next stage in this challenge, as we’re always looking for new EO projects and opportunities within agri-tech. If the Government is serious about its stated ambition to put the country at the forefront of this revolution, there should be exciting times ahead.

Monitoring Water Quality from Space

Algal Blooms in Lake Erie, around Monroe, acquired by Sentinel-2 on 3rd August 2017. Data Courtesy of ESA/Copernicus.

Two projects using Earth Observation (EO) data to monitor water quality caught our eye recently. As we’re in process of developing two water quality products for our own online portal, we’re interested in what everyone else is doing!

At the end of January UNESCO’s International Hydrological Programme launched a tool to monitor global water quality. The International Initiative on Water Quality (IIWQ) World Water Quality Portal, built by EOMAP, provides:

  • turbidity and sedimentation distribution
  • chlorophyll-a concentration
  • Harmful Algal Blooms indicator
  • organic absorption
  • surface temperature

Based on optical data from Landsat and Sentinel-2 it can provide global surface water mosaics at 90 m spatial resolution, alongside 30 m resolution for seven pilot river basins.  The portal was launched in Paris at the “Water Quality Monitoring using Earth Observation and Satellite-based Information” meeting and was accompanied by an exhibition on “Water Quality from the Space – Mesmerizing Images of Earth Observation”.

The tool, which can be found here, focuses on providing colour visualizations of the data alongside data legends to help make it as easy as possible to use. It is hoped that this will help inform and educate policy makers, water professionals and the wider public about the value of using satellite data from monitoring water resources.

A second interesting project, albeit on a smaller scale, was announced last week which is going to use Sentinel-2 imagery to monitor water quality in Scottish Lochs. Dr Claire Neil, from the University of Stirling, is leading the project and will be working with Scottish Environment Protection Agency. It will use reflectance measures to estimate the chlorophyll-a concentrations to help identify algal blooms and other contaminants in the waters. The project will offer an alternative approach to the current water quality monitoring, which uses sampling close to the water’s edge.

An interesting feature of the project, particularly for us, is the intention to focus on developing this work into an operational capability for SEPA to enable them to improve their approach to assessing water quality.

This transition from a ‘good idea’ into an operational product that will be used, and therefore purchased, by end users is what all EO companies are looking for and we’re not different. Our Pixalytics Portal which we discussed a couple of weeks ago is one of the ways we are trying to move in that direction. We have two water quality monitoring products on it:

  • Open Ocean Water Quality product extracts time-series data from a variety of 4 km resolution satellite datasets from NASA, giving an overview what is happening in the water without the need to download a lot of data.
  • Planning for Coastal Airborne Lidar Surveys product provides an assessment of the penetration depth of a Lidar laser beam, from an airborne survey system, within coastal waters based on the turbidity of the water. This ensures that companies who plan overflights can have confidence in how far their Lidar will see.

We’re just at the starting point in productizing the services we offer, and so it is always good to see how others are approaching the similar problem!

Flywheels Spinning At Data.Space

The Data.Space Conference took place last week in Glasgow. It was an interesting, thought-provoking and useful event, which felt very friendly and was distinguished by the seniority of the attendees with a lot of companies were represented by CEO’s, MD’s and owners/founders.

The event began with the session ‘Listening to our Earth’ with presentations from Spire, Hawkeye360, KSAT, CGI UK and Promos Ventures. We were particularly caught by the idea from Peter Platzer of Spire, who talked about the flywheel and how you need to build momentum within companies to move from good to great, in particular focussing on making a tenfold improvement on what currently exists.

Sam gave her presentation in the second session on ‘Looking at our Earth’, which can be accessed here. We found it encouraging that some of the key messages that we picked out were echoed by other presenters, both in this session and others. The common themes highlighted included:

  • Stop focussing on imagery, and focus more on customer needs.
  • Demonstrate the problem that the Earth Observation (EO) data solves and the value it adds.
  • The fact that the data comes from space isn’t critical to the customer.

We had a number of people come up after Samantha’s presentation to say how much they enjoyed it, which is always good! Interestingly, hers was not the only presentation that Pixalytics got mentioned in. Our blog on ‘Earth Observation Satellites in Space’ was name checked by Will Cadell, CEO of Sparkgeo, in the session after lunch. A highlight of which was Grega Milcinski, CEO Sinergise, demonstrating the possibilities of the Sentinel Hub and how they are making a lot of their code available on GitHub to enable others to build on it.

The second day began with a thought provoking session on using EO to create a better planet. Temporal resolution, file sizes, lack of internet facilities and the need to have quick simple maps was highlighted as a challenge to using EO data in disaster relief scenarios. Access to datasets was highlighted by Tony Long, Global Fishing Watch, as a barrier to providing a planet wide view of what is happening. It was also great to listen to Steve Lee from Astrosat talk about their experiences of two UK Space Agency International Partnership Programme projects, and pick up some pointers for the ones we’re involved in.

As a micro company, the second session of this day was fascinating to us giving an overview of what investors and venture capital people look for in companies. It was heartening to hear that data analytics is seen as having a lot of value, but less positive was that the vast majority of funding in this area is going into the US. It was also noted that these funders aren’t interested in funding research, they want to get in on the ‘Last Mile’ of a product or service – making us wonder whether we would ever be attractive to investors!

Pixalytics Stand at Data.Space

Throughout the conference we manned our small table, surrounded by companies with the obligatory pop-up banners. We stood alone bare backed as we flew to Glasgow on Easyjet and a pop-up banner would have been an extra bag! We had lots of interesting conversations over potential collaborations, new customers, product ideas and solutions to challenges; and we even managed to sell a couple of copies of our book! We were able to demonstrate our portal, and we got some really good feedback. We’ll be looking for more feedback and some beta testers over the coming weeks – please get in touch in you’re interested! Finally, we‘d also like to commend the fantastic food offering at the event, which had lots of lovely Scottish notes.

Overall, this was a great event and we’ll certainly be looking to go back next year!

Five Learning Points For Developing An Earth Observation Product Portal

Landsat mosaic image of the Isle of Wight. Data courtesy of NASA.

This week we’re gently unveiling our Pixalytics Portal at the DATA.SPACE 2018 Conference taking place in Glasgow.

We’ve not attended DATA.SPACE before, but great feedback from some of the last years attendees convinced us to come. It’s an international conference focusing on the commercial opportunities available through the exploitation of space-enabled data and so it seemed the perfect place to demonstrate our new development.

Regular readers will know we’ve had the product portal idea for a little while, but it often went to the back of the work queue when compared to existing work, bid preparation and our other developments. Hence, six months ago we pinpointed the DATA.SPACE as our unveiling event!

On the 1st and 2nd February at Technology & Innovation Centre in Glasgow we have a stand where we’re inviting everyone to come up and have a look at the portal and give us feedback on the idea, principles and the look and feel of the portal.

We’re demonstrating five products, and we’re looking to expand this, these are:

  • Landscape Maps of the UK
  • Water Extent Mapping
  • Flood Water Mapping
  • Coastal Airborne Lidar Survey Planning Datasets
  • Open Ocean Water Quality Parameters

We’re not just attending, we’re exhibiting and Sam’s presenting!! So we’re going to have the full triumvirate conference experience. Sam is presenting in the first day’s second session titled ‘Looking at our Earth’ which starts at 11.10am. Her presentation is called ‘Growing Earth Observation By Being More Friendly.’

Developing this portal to its current state has been a really interesting journey. When we began we didn’t know why some of the larger companies haven’t cracked this already! Six months later and we’ve started to understand the challenges!

We thought it might be helpful to reveal are five top learning points for any other SME’s in our industry considering developing a portal. They are:

  1. Challenging the Digital e-commerce Process: Standard digital e-commerce systems allow customers to purchase a product and then download it immediately. The need to have an additional step of a few minutes, or even hours, to undertake data processing complicates things. It means that simple off-the-shelf plug-ins won’t work.
  2. Don’t Go for Perfection: Building a perfect portal will take time. We’ve adopted the approach of Eric Ries, author of The Startup Way, who advocates building a system for ten purchases. We’re perhaps a bit beyond that, but certainly we know that this will only be the first iteration of our portal.
  3. Linking The Moving Parts: Our portal has a web-front end, a cloud processing backend and the need to download requested data. We’ve tried to limit the amount of data and processing needed, but we can’t eliminate it entirely. This means there are a lot of moving parts to get right, and a lot of error capturing to be done!
  4. Legal & Tax issues: Sorting out the products is only one part of the process, don’t forget to do the legal and tax side as that has implications on your approach. We have learnt a lot about the specific requirements of digital services in e-commerce!
  5. Have a deadline: We chose to exhibit at DATA.SPACE to give us a deadline. We knew if we didn’t have a hard deadline we’d still be debating the products to include, and have developed none of them! The deadline has moved us really close to having a portal.

If you’re at DATA.SPACE this week, please come up and say hello. If you’ve got a few minutes to spare we’d love to get you feedback on our portal.

Have you read the top Pixalytics blogs of 2017?

World Cloud showing top 100 words from Pixalytics 2017 blogs

In our final blog of the year, we’re looking back at our most popular posts of the last twelve months. Have you read them all?

Of the top ten most read blogs, nine were actually written in previous years. These were:

You’ll notice that this list is dominated by our annual reviews of the number of satellites, and Earth observation satellites, orbiting the Earth. It often surprises us to see where these blogs are quoted and we’ve been included in articles on websites for Time Magazine, Fortune Magazine and the New Statesman to name a few!

So despite only being published in November this year coming in as the fourth most popular blog of the year was, unsurprisingly:

For posts published in 2017, the other nine most popular were:

2017 has been a really successful one for our website. The number of the views for the year is up by 75%, whilst the number of unique visitors has increased by 92%!

Whilst hard work, we do enjoy writing our weekly blog – although staring at a blank screen on a Wednesday morning without any idea of what we’ll publish a few hours later can be daunting!

We’re always delighted at meetings and conferences when people come up and say they read the blog. It’s nice to know that we’re read both within our community, as well as making a small contribution to informing and educating people outside the industry.

Thanks for reading this year, and we hope we can catch your eye again next year.

We’d like to wish everyone a Happy New Year, and a very successful 2018!

Big Data From Space

Last week I attended the 2017 Conference on Big Data from Space (BiDS’17) that was held in Toulouse, France. The conference was co-organised by the European Space Agency (ESA), the Joint Research Centre (JRC) of the European Commission (EC), and the European Union Satellite Centre (SatCen). It aimed to bring together people from multiple disciplines to stimulate the exploitation Earth Observation (EO) data collected in space.

The event started on Tuesday morning with keynotes from the various co-organising space organisations. Personally, I found the talk by Andreas Veispak, from the European Commission’s (EC) DG GROW department which is responsible for EU policy on the internal market, industry, entrepreneurship and SMEs, particularly interesting. Andreas has a key involvement in the Copernicus and Galileo programmes and described the Copernicus missions as the first building block for creating an ecosystem, which has positioned Europe as a global EO power through its “full, free and open” data policy.

The current Sentinel satellite missions will provide data continuity until at least 2035 with huge amounts of data generated, e.g., when all the Sentinel satellite missions are operational over 10 petabytes of data per year will be produced. Sentinel data has already been a huge success with current users exceeding what was expected by a factor of 10 or 20 and every product has been downloaded at least 10 times. Now, the key challenge is to support these users by providing useful information alongside the data.

The ESA presentation by Nicolaus Hanowski continued the user focus by highlighting that there are currently over 100 000 registered Copernicus data hub users. Nicolaus went on to describe that within ESA success is now being measured by use of the data for societal needs, e.g., the sustainable development goals, rather than just the production of scientific data. Therefore, one of the current aims is reduce the need for downloading by having a mutualised underpinning structure, i.e. the Copernicus Data and Information Access Services (DIAS) that will become operational in the second quarter of 2018, which will allow users to run their computer code on the data without the need for downloading. The hope is that this will allow users to focus on what they can do with the data, rather than worrying around storing it!

Charles Macmillan from JRC described their EO Data and Processing Platform (JEODPP) which is a front end based around the Jupyter Notebook that allows users to ask questions using visualisations and narrative text, instead of just though direct programming. He also noted that increasingly the data needed for policy and decision making is held by private organisations rather than government bodies.

The Tuesday afternoon was busy as I chaired the session on Information Generation at Scale. We had around 100 people who heard some great talks on varied subjects such as mass processing of Sentinel & Landsat data for mapping human settlements, 35 years of AVHRR data and large scale flood frequency maps using SAR data.

‘Application Of Earth Observation To A Ugandan Drought And Flood Mitigation Service’ poster

I presented a poster at the Wednesday evening session, titled “Application Of Earth Observation To A Ugandan Drought And Flood Mitigation Service”. We’re part of a consortium working on this project which is funded via the UK Space Agency’s International Partnership Programme. It’s focus is on providing underpinning infrastructure for the Ugandan government so that end users, such as farmers, can benefit from more timely and accurate information – delivered through a combination of EO, modelling and ground-based measurements.

It was interesting to hear Grega Milcinski from Sinergise discuss a similar approach to users from the lessons they learnt from building the Sentinel Hub. They separated the needs of science, business and end users. They’ve chosen not to target end users due to the challenges surrounding the localisation and customisation requirements of developing apps for end users around the world. Instead they’ve focussed on meeting the processing needs of scientific and business users to give them a solid foundation upon which they can then build end user applications. It was quite thought provoking to hear this, as we’re hoping to move towards targeting these end users in the near future!

There were some key technology themes that came of the presentations at the conference:

  • Jupyter notebooks were popular for frontend visualisation and data analytics, so users just need to know some basic python to handle large and complex datasets.
  • Making use of cloud computing using tools such as Docker and Apache Spark for running multiple instances of code with integrated parallel processing.
  • Raw data and processing on the fly: for both large datasets within browsers and by having the metadata stored so you can quickly query before committing to processing.
  • Analysis ready data in data cubes, i.e. the data has been processed to a level where remote sensing expertise isn’t so critical.

It was a great thought provoking conference. If you’d like to get more detail on what was presented then a book of extended abstracts is available here. The next event is planned for 19-21 February 2019 in Munich, Germany and I’d highly recommend it!

Earth observation satellites in space in 2017?

Artist’s rendition of a satellite – paulfleet/123RF Stock

Earth Observation (EO) satellites currently account for just over a third of all the operational satellites orbiting the Earth. As we described two weeks ago, according to the Union of Concerned Scientists database there were 1 738 operational satellites at the end of August 2017, and 620 of these have a main purpose of either EO or Earth Science.

This represents a massive 66% increase in the number of EO satellites from our 2016 update, and the percentage of overall active satellites is also up from one quarter. These figures demonstrate, once again, that EO is a growing industry.

What do Earth observation satellites do?
Looking more closely at what EO satellites actually do demonstrates that despite increases in satellite numbers in almost all categories, it’s clearly growth in optical imaging which is the behind this significant increase. The purposes of active EO satellites in 2017 are:

  • Optical Imaging: 327 satellites representing a 98% increase on last year
  • Radar imaging: 45 satellites, a 32% increase on last year
  • Infrared imaging: 7 satellites, no change to last year
  • Meteorology: 64 satellites, a 73% increase on last year
  • Earth Science: 60 satellites, a 13% increase on last year
  • Electronic intelligence: 50 satellites, a 6% increase on last year
  • 16 satellites with other purposes, a 133% increase on last year
  • 51 satellites simply list EO as their purpose, a 100% increase on last year

Who controls Earth observation satellites?
Despite the huge increase in EO satellites, the number of countries who control them has not seen the same growth. This year there are 39 different countries listed with EO satellites, an increase of only 15% on last year. In addition, there are satellites run by multinational agencies such as the European Space Agency (ESA).

The USA leads the way controlling over half the EO satellites, although this is largely due to Planet who account for 30% on their own! Following USA is China with 14.4%, and then come India, Japan and Russia who each have over 3%.

The USA is followed by China with about 20%, and Japan and Russia come next with around 5% each. The UK is only listed as controller on 4 satellites all related to the DMC constellation, although we are also involved in the ESA satellites.

Size of Earth observation satellites
It’s interesting to look out the size breakdown of these satellites which shows the development of the small satellite. For this breakdown, we’ve classed satellites into four groups:

  • Large satellites with a launch mass of over 500kg
  • Small satellites with a launch mass between 100 and 500 kg.
  • Microsats with a launch mass between 10 and 100 kg.
  • Nanosats/Cubesats with a launch mass below 10 kg.

For the current active EO satellites there are:

  • 186 large satellites equating to 30.00%
  • 74 small satellites equating to 7.26%
  • 100 microsats equating to 16.13%
  • 215 Nanosats/Cubesats equating to 34.68%
  • The remaining 45 satellites do not have a launch mass specified.

Who uses the Earth observation satellites?

There has also been significant movement in the breakdown of EO satellites users since 2016. The influence of small commercial satellites undertaking optical imaging is again apparent. In 2017 the main users for EO were:

  • Commercial users with 44.68% of satellites (up from 21% in 2016)
  • Government users with 30.81% (down from 44% in 2016)
  • Military users with 19.35% (down from 30% in 2016)
  • Civil users with 5.16% (approximately the same as in 2016)

It should be noted that some of these satellites have multiple users.

Orbits of Earth observation satellites
In terms of altitude, unsurprisingly the vast majority, 92.25%, of EO satellites are in low earth orbits, 6.45% are in geostationary orbits and 1.3% are in an elliptical orbits.
There is a much greater variation in type of orbits:

  • 415 in a sun-synchronous orbit
  • 125 in a non-polar inclined orbit
  • 17 in a polar orbit
  • 8 in an equatorial orbit
  • 5 in an elliptical orbit
  • 5 in a Molniya orbit (highly eccentric elliptical orbits of approximately 12 hours)
  • 45 satellites do not have a type of orbit listed

Few interesting facts about active Earth observation satellites

  • Oldest active EO satellite is the Brazilian SCD-1 Meteorology/Earth Science satellite.
  • Valentine’s Day (14th February) 2017 saw Planet launch its Flock 3P meaning that 88 active EO satellites were launched on that day.
  • Most popular launch site is Satish Dhawan Space Centre operated by Indian Space Research Organisation (ISRO) who have put 169 into space.
  • ISRO’s Polar Satellite Launch Vehicle is also the most popular launch vehicle with 114 satellites.
  • The EO satellite furthest away from the Earth is the USA’s Electronic Intelligence satellite Trumpet 3 which has an apogee of 38 740 km.

What’s next?
It’s not clear whether the rapid growth in the number of EO satellites will continue into 2018. Planet, one of the key drivers, announced earlier this month that they had successfully completed their objective to image the globe’s entire landmass every day – which is a massive achievement!

That’s not say that Planet won’t push on further with new ideas and technologies, and other companies may move into that space too. China launched a number of EO satellites last weekend and there are already a number of interesting satellites planned for launch between now and the middle of 2018 including, Cartosat-2ER, NovaSAR-S, GOES-S and Sentinel-3B to name a few. .

One thing is for certain, there is a lot collected EO data out there, and it is increasing by the day!

To TEDx Speaking and Beyond!

Back in April I received an invitation to speak at the ‘One Step Beyond’ TEDx event organised at the National Space Centre in Leicester, with my focus on the Blue Economy and Earth Observation (EO).

We’ve been to a few TEDx events in the past and they’ve always been great, and so I was excited to have the opportunity to join this community. Normally, I’m pretty relaxed about public speaking. I spend a lot of time thinking about what I’m going to say, but don’t assemble my slides until a couple of days beforehand. This approach has developed in part because I used to lecture – where I got used to talking for a while with a few slides – but also because I always like to take some inspiration from the overall mood of the event I’m talking at. This can be through hearing other speakers, attending workshops or even just walking around the local area.

TEDx, however, was different. There was a need to have the talk ready early for previewing and feedback, alongside producing stunning visuals and having a key single message. So, for a change, I started with a storyboard.

My key idea was to get across the sense of wonder I and many other scientists share in observing the oceans from space, whilst also emphasising that anyone can get involved in protecting this natural resource. I echoed the event title by calling my talk “Beyond the blue ocean” as many people think of the ocean as just a blue waterbody. However, especially from space, we can see the beauty, and complexity, of colour variations influenced by the microscopic life and substances dissolved and suspended within it.

I began with an with an image called the ‘Pale Blue Dot’ that was taken by Voyager 1 at a distance of more than 4 billion miles from Earth, and then went with well-known ‘Blue Marble’ image before zooming into what we see from more conventional EO satellites. I also wanted to take the audience beyond just optical wavelengths and so displayed microwave imagery from Sentinel-1 that’s at a similar spatial resolution to my processed 15 m resolution Sentinel-2 data that was also shown.

Dr Samantha Lavender speaking at the One Step Beyond TEDx event in Leicester. Photo courtesy of TEDxLeicester

The satellite imagery included features such as wind farms, boats and phytoplankton blooms I intended to discuss. However, this didn’t quite to go to plan on my practice run through! The talk was in the planetarium at the National Space Centre, which meant the screen was absolutely huge – as you can see in the image to the right. However, with the lights on in the room the detail in the images was really difficult to see. The solution for the talk itself was to have the planetarium in darkness and myself picked out by two large spotlights, meaning that the image details were visible to the audience but I couldn’t see the audience myself.

The evening itself took place on the 21st September, and with almost two hundred in the audience I was up first. I was very happy with how it went and the people who spoke to me afterwards said they were inspired by what they’d seen. You can see for yourself, as the talk can be found here on the TEDx library. Let me know what you think!

I was followed by two other fantastic speakers who gave inspiring presentations and these are also up on the TEDx Library. Firstly, Dr Emily Shuckburgh, Deputy Head of Polar Oceans team at British Antarctic Survey discussed “How to conduct a planetary health check”; and she was followed by Corentin Guillo, CEO and Founder of Bird.i, who spoke about “Space entrepreneurship, when thinking outside the box is not enough”.

The whole event was hugely enjoyable and the team at TEDx Leicester did an amazing job of organising it. It was good to talk to people after the event, and it was fantastic that seventy percent of the audience were aged between 16 and 18. We need to do much more of this type of outreach activities to educate and inspire the next generation of scientists. Of course, for me, the day also means that I can now add TEDx Speaker to my biography!

Looking To Earth Observation’s Future

Artist’s view of Sentinel-3. Image courtesy of ESA–Pierre Carril.

The future is very much the theme for Earth Observation (EO) in Europe this week.

One of the biggest potential impacts for the industry could come out of a meeting that took place yesterday, 7 November, in Tallinn, Estonia as part of European Space Week. It was a meeting between the European Union (EU) and the European Space Agency (ESA) to discuss the next steps for the Copernicus programme beyond 2020. This is important in terms of not only continuing the current Sentinel missions, but also expanding what is monitored. There are concerns over gaps in coverage for certain types of missions which Europe could help to fill.

As an EO SME we’re intrigued to see the outcomes of these discussions as they include a focus on how to leverage Copernicus data more actively within the private sector. According to a recent Industry Survey by the European Association of Remote Sensing Companies (EARSC), there are just over 450 EO companies operating in Europe, and 66% of these are micro companies like Pixalytics – defined by having less than ten employees. This rises to 95% of all EO European companies if you include small businesses – with between 10 and 50 employees.

Therefore, if the EU/ESA is serious about developing the entrepreneurial usage of Copernicus data, it will be the small and micro companies that will make the difference. As these companies grow, they will need high skilled employees to support them.

Looking towards the next generation of EO scientists, the UK Space Agency announced seven new outreach projects this week inspire children to get involved in space specifically and more widely, to increase interest in studying science, technology, engineering and mathematics (STEM) subjects. The seven projects are:

  1. Glasgow Science Festival: Get me into orbit!
  2. Triathlon Trust: Space to Earth view
  3. Mangorolla CIC: Space zones ‘I’m a Scientist’ and ‘I’m an Engineer’
  4. Institute for Research in Schools: MELT: Monitoring the Environment, Learning for Tomorrow
  5. The Design and Technology Association: Inspiring the next generation: design and technology in space
  6. European Space Education Resource Office-UK: James Webb Space Telescope: Design challenge
  7. Children’s Radio UK (Fun Kids): Deep Space High – UK Spaceports

There will be a total of £210,000 invested in these. We’re particularly excited to see the MELT project which will get students to use EO data to analyse what is happening at the two poles.

Each of these elements will help shape the EO industry in this country. With the UK committed to remaining within ESA, decisions on the future of the Copernicus programme will provide a strong strategic direction for both the space and EO industries in Europe. Delivering on that direction will require the next generation workforce who will come from the children studying STEM subjects now.

Both the strategic direction, and associated actions to fulfil those ambitions, are vital for future EO success.

5 Signs You Work In Earth Observation

Sentinel-2A image of UK south east coastline, acquired on 4th September 2017. Data courtesy of ESA/Copernicus.

Do you recognise yourself in any these five signs? if so, you’re definitely working in the Earth observation industry.

  1. You have a favourite satellite or instrument, or image search tool.
  2. When a satellite image appears on television, you tell everyone in the room which satellite/sensor it came from.
  3. You’ve got an irrational hatred for clouds (unless you’re working on clouds or using radar images).
  4. Anything space related happens and your family asks whether you’re involved with it, and thinks you know everyone who works at NASA or ESA.
  5. Your first reaction to seeing an interesting location isn’t that you should plan to go there. Instead, you wonder whether it would make a good satellite image.

We tick all of these signs at Pixalytics! Last week we suffered from number five when we saw a snippet from the season finale of the UK TV programme ‘Liar’. It wasn’t a programme we’d watched, but as we caught an atmospheric panning shot of the location, and only one thought when through our minds, ‘That would make a great satellite image!’

It was a stunning shot of a marshland with water interwoven between islands. Without knowing anything about the programme, we were expecting it to have been filmed in a far flung Nordic location. Following a bit of impromptu googling we were surprised to discover it was actually Tollesbury on the Essex coast in the UK. It also turns out that we were late to the party on the discovery of the programme and the location.

Sentinel-2A image of Mersea Island and surrounding area, acquired on 4th September 2017. Data courtesy of ESA/Copernicus.

The image on the right shows Mersea Island, which has brown saltmarshes above it within the adjacent inlets of the Blackwater Estuary. To the left of the island is the village of Tollesbury and the Tollesbury marina, which is located within the saltmarshes. This area is the largest of the saltmarshes of Essex, but only the fifth largest of the UK. They play a key role in flood protection and can reduce the height of damaging waves in storm surge conditions by 20%. However, they are disappearing due to sea erosion that’s caused a sixty percent reduction in the last 20 years.

The image itself is a zoomed in pseudo-true-colour composite at 10 m spatial resolution using data acquired by Sentinel-2A on the 4th September 2017 – a surprisingly cloud free day for the UK. The full Sentinel-2 image can be seen at the top of the blog.

As often happens when we look in detail at satellite images, something catches our eye. This time it was the three bluish looking strips just above Mersea island. These are the 82,944 solar panels which make up Langenhoe Solar Farm, and have the capacity to generate 21.15 MW of solar power.

So how many of you recognise our signs of working in Earth observation? Any you think we’ve missed? Get in touch, let us know!