First Light Images

Mosaic image of The Netherlands created using three Sentinel-1 scans in March 2015.
Data Courtesy of Copernicus Sentinel data (2015)/ESA.

Two of the satellites launched on 12th January by the Indian Space Research Organization (ISRO) have released their first images. We wrote about the launch two weeks ago, and wanted to follow up on their initial outputs.

The first is the exciting ICEYE-X1, which is both the world’s first synthetic-aperture radar (SAR) microsatellite and Finland’s first commercial satellite. We currently use Sentinel-1 SAR imagery for some of Pixalytics flooding and water extent mapping products and so are really interested to see what this satellite produces.

One of the key advantages of radar satellites over optical ones is that they can capture images both during day and night, and are not hampered by the presence of clouds.  However, using a different part of the electromagnetic spectrum to optical satellites means that although it is black and white image it’s sometimes easier to distinguish objects within it.

Zoomed in portion of Netherlands mosaic image created using three Sentinel-1 scans in March 2015.
Data Courtesy of Copernicus Sentinel data (2015)/ESA.

For example, the image to the left is a zoomed in portion of Sentinel-1 mosaic of the Netherlands acquired in March 2015 where you can clearly see couple of off-shore windfarms.

Sentinel-1 is a twin satellite constellation and uses a C-Band SAR on board two identical satellites. Over land it captures data in an Interferometric Wide swath mode, which means it takes three scans and then combines them into a single image. Each scan has a width of 250 km and a spatial resolution of 5 m x 20 m, with a six day repeat cycle for an area of land.

In comparison, ICEYE-X1 produced its first image with a spatial resolution of 10 m, and it’s hoped to reduce this down to 3 m. It issued its first image on Monday 15th January, three days after launch, showing part of Alaska, including the Noatak National Preserve, with a ground coverage of approximately 80 km by 40 km. The image can be seen here.

ICEYE-X1 weighs in at under a 100 kg, which is less than a twentieth of Sentinel-1 which weighed in at 2 300kg. This size reduction produces a high reduction in the cost too, with estimates suggesting it only cost ICEYE around a hundredth of the €270 million price of the second Sentinel-1 satellite.

By 2020 ICEYE is hoping to establish a global imaging constellation of six SAT microsatellites that will be able to acquire multiple images of the same location on Earth each day. After this, the company has ambitions of launching 18 SAR-enabled microsatellites to bring reliable high temporal-resolution images which would enable every point on the Earth to be captured eight times a day.

Cartosat-2F also sent its first image on the 15th January. The image, which can be found here, is of the city of Indore, in the Indian state of Madhya Pradesh. The Holkar Stadium is tagged in the centre, a venue which has previously hosted test Cricket. The satellite carries a high resolution multi-spectral imager with 1 m spatial resolution and a swath width of 10 km.

It is the seventh satellite in the Cartosat series which began in 2007, the others are:

  • Cartosat 2 launched on 10th January 2007
  • Cartosat 2A launched on 28th April 2008
  • Cartosat 2B launched on 12th July 2010
  • Cartosat 2C launched on 22nd June 2016
  • Cartosat 2D launched on 15th February 2017
  • Cartosat 2E launched on 23rd June 2017

These two satellites are just at the start of their journey, and it will be interesting to see what amazing images they capture in the future.

Big Data From Space

Last week I attended the 2017 Conference on Big Data from Space (BiDS’17) that was held in Toulouse, France. The conference was co-organised by the European Space Agency (ESA), the Joint Research Centre (JRC) of the European Commission (EC), and the European Union Satellite Centre (SatCen). It aimed to bring together people from multiple disciplines to stimulate the exploitation Earth Observation (EO) data collected in space.

The event started on Tuesday morning with keynotes from the various co-organising space organisations. Personally, I found the talk by Andreas Veispak, from the European Commission’s (EC) DG GROW department which is responsible for EU policy on the internal market, industry, entrepreneurship and SMEs, particularly interesting. Andreas has a key involvement in the Copernicus and Galileo programmes and described the Copernicus missions as the first building block for creating an ecosystem, which has positioned Europe as a global EO power through its “full, free and open” data policy.

The current Sentinel satellite missions will provide data continuity until at least 2035 with huge amounts of data generated, e.g., when all the Sentinel satellite missions are operational over 10 petabytes of data per year will be produced. Sentinel data has already been a huge success with current users exceeding what was expected by a factor of 10 or 20 and every product has been downloaded at least 10 times. Now, the key challenge is to support these users by providing useful information alongside the data.

The ESA presentation by Nicolaus Hanowski continued the user focus by highlighting that there are currently over 100 000 registered Copernicus data hub users. Nicolaus went on to describe that within ESA success is now being measured by use of the data for societal needs, e.g., the sustainable development goals, rather than just the production of scientific data. Therefore, one of the current aims is reduce the need for downloading by having a mutualised underpinning structure, i.e. the Copernicus Data and Information Access Services (DIAS) that will become operational in the second quarter of 2018, which will allow users to run their computer code on the data without the need for downloading. The hope is that this will allow users to focus on what they can do with the data, rather than worrying around storing it!

Charles Macmillan from JRC described their EO Data and Processing Platform (JEODPP) which is a front end based around the Jupyter Notebook that allows users to ask questions using visualisations and narrative text, instead of just though direct programming. He also noted that increasingly the data needed for policy and decision making is held by private organisations rather than government bodies.

The Tuesday afternoon was busy as I chaired the session on Information Generation at Scale. We had around 100 people who heard some great talks on varied subjects such as mass processing of Sentinel & Landsat data for mapping human settlements, 35 years of AVHRR data and large scale flood frequency maps using SAR data.

‘Application Of Earth Observation To A Ugandan Drought And Flood Mitigation Service’ poster

I presented a poster at the Wednesday evening session, titled “Application Of Earth Observation To A Ugandan Drought And Flood Mitigation Service”. We’re part of a consortium working on this project which is funded via the UK Space Agency’s International Partnership Programme. It’s focus is on providing underpinning infrastructure for the Ugandan government so that end users, such as farmers, can benefit from more timely and accurate information – delivered through a combination of EO, modelling and ground-based measurements.

It was interesting to hear Grega Milcinski from Sinergise discuss a similar approach to users from the lessons they learnt from building the Sentinel Hub. They separated the needs of science, business and end users. They’ve chosen not to target end users due to the challenges surrounding the localisation and customisation requirements of developing apps for end users around the world. Instead they’ve focussed on meeting the processing needs of scientific and business users to give them a solid foundation upon which they can then build end user applications. It was quite thought provoking to hear this, as we’re hoping to move towards targeting these end users in the near future!

There were some key technology themes that came of the presentations at the conference:

  • Jupyter notebooks were popular for frontend visualisation and data analytics, so users just need to know some basic python to handle large and complex datasets.
  • Making use of cloud computing using tools such as Docker and Apache Spark for running multiple instances of code with integrated parallel processing.
  • Raw data and processing on the fly: for both large datasets within browsers and by having the metadata stored so you can quickly query before committing to processing.
  • Analysis ready data in data cubes, i.e. the data has been processed to a level where remote sensing expertise isn’t so critical.

It was a great thought provoking conference. If you’d like to get more detail on what was presented then a book of extended abstracts is available here. The next event is planned for 19-21 February 2019 in Munich, Germany and I’d highly recommend it!

To TEDx Speaking and Beyond!

Back in April I received an invitation to speak at the ‘One Step Beyond’ TEDx event organised at the National Space Centre in Leicester, with my focus on the Blue Economy and Earth Observation (EO).

We’ve been to a few TEDx events in the past and they’ve always been great, and so I was excited to have the opportunity to join this community. Normally, I’m pretty relaxed about public speaking. I spend a lot of time thinking about what I’m going to say, but don’t assemble my slides until a couple of days beforehand. This approach has developed in part because I used to lecture – where I got used to talking for a while with a few slides – but also because I always like to take some inspiration from the overall mood of the event I’m talking at. This can be through hearing other speakers, attending workshops or even just walking around the local area.

TEDx, however, was different. There was a need to have the talk ready early for previewing and feedback, alongside producing stunning visuals and having a key single message. So, for a change, I started with a storyboard.

My key idea was to get across the sense of wonder I and many other scientists share in observing the oceans from space, whilst also emphasising that anyone can get involved in protecting this natural resource. I echoed the event title by calling my talk “Beyond the blue ocean” as many people think of the ocean as just a blue waterbody. However, especially from space, we can see the beauty, and complexity, of colour variations influenced by the microscopic life and substances dissolved and suspended within it.

I began with an with an image called the ‘Pale Blue Dot’ that was taken by Voyager 1 at a distance of more than 4 billion miles from Earth, and then went with well-known ‘Blue Marble’ image before zooming into what we see from more conventional EO satellites. I also wanted to take the audience beyond just optical wavelengths and so displayed microwave imagery from Sentinel-1 that’s at a similar spatial resolution to my processed 15 m resolution Sentinel-2 data that was also shown.

Dr Samantha Lavender speaking at the One Step Beyond TEDx event in Leicester. Photo courtesy of TEDxLeicester

The satellite imagery included features such as wind farms, boats and phytoplankton blooms I intended to discuss. However, this didn’t quite to go to plan on my practice run through! The talk was in the planetarium at the National Space Centre, which meant the screen was absolutely huge – as you can see in the image to the right. However, with the lights on in the room the detail in the images was really difficult to see. The solution for the talk itself was to have the planetarium in darkness and myself picked out by two large spotlights, meaning that the image details were visible to the audience but I couldn’t see the audience myself.

The evening itself took place on the 21st September, and with almost two hundred in the audience I was up first. I was very happy with how it went and the people who spoke to me afterwards said they were inspired by what they’d seen. You can see for yourself, as the talk can be found here on the TEDx library. Let me know what you think!

I was followed by two other fantastic speakers who gave inspiring presentations and these are also up on the TEDx Library. Firstly, Dr Emily Shuckburgh, Deputy Head of Polar Oceans team at British Antarctic Survey discussed “How to conduct a planetary health check”; and she was followed by Corentin Guillo, CEO and Founder of Bird.i, who spoke about “Space entrepreneurship, when thinking outside the box is not enough”.

The whole event was hugely enjoyable and the team at TEDx Leicester did an amazing job of organising it. It was good to talk to people after the event, and it was fantastic that seventy percent of the audience were aged between 16 and 18. We need to do much more of this type of outreach activities to educate and inspire the next generation of scientists. Of course, for me, the day also means that I can now add TEDx Speaker to my biography!

Looking To Earth Observation’s Future

Artist’s view of Sentinel-3. Image courtesy of ESA–Pierre Carril.

The future is very much the theme for Earth Observation (EO) in Europe this week.

One of the biggest potential impacts for the industry could come out of a meeting that took place yesterday, 7 November, in Tallinn, Estonia as part of European Space Week. It was a meeting between the European Union (EU) and the European Space Agency (ESA) to discuss the next steps for the Copernicus programme beyond 2020. This is important in terms of not only continuing the current Sentinel missions, but also expanding what is monitored. There are concerns over gaps in coverage for certain types of missions which Europe could help to fill.

As an EO SME we’re intrigued to see the outcomes of these discussions as they include a focus on how to leverage Copernicus data more actively within the private sector. According to a recent Industry Survey by the European Association of Remote Sensing Companies (EARSC), there are just over 450 EO companies operating in Europe, and 66% of these are micro companies like Pixalytics – defined by having less than ten employees. This rises to 95% of all EO European companies if you include small businesses – with between 10 and 50 employees.

Therefore, if the EU/ESA is serious about developing the entrepreneurial usage of Copernicus data, it will be the small and micro companies that will make the difference. As these companies grow, they will need high skilled employees to support them.

Looking towards the next generation of EO scientists, the UK Space Agency announced seven new outreach projects this week inspire children to get involved in space specifically and more widely, to increase interest in studying science, technology, engineering and mathematics (STEM) subjects. The seven projects are:

  1. Glasgow Science Festival: Get me into orbit!
  2. Triathlon Trust: Space to Earth view
  3. Mangorolla CIC: Space zones ‘I’m a Scientist’ and ‘I’m an Engineer’
  4. Institute for Research in Schools: MELT: Monitoring the Environment, Learning for Tomorrow
  5. The Design and Technology Association: Inspiring the next generation: design and technology in space
  6. European Space Education Resource Office-UK: James Webb Space Telescope: Design challenge
  7. Children’s Radio UK (Fun Kids): Deep Space High – UK Spaceports

There will be a total of £210,000 invested in these. We’re particularly excited to see the MELT project which will get students to use EO data to analyse what is happening at the two poles.

Each of these elements will help shape the EO industry in this country. With the UK committed to remaining within ESA, decisions on the future of the Copernicus programme will provide a strong strategic direction for both the space and EO industries in Europe. Delivering on that direction will require the next generation workforce who will come from the children studying STEM subjects now.

Both the strategic direction, and associated actions to fulfil those ambitions, are vital for future EO success.

5 Signs You Work In Earth Observation

Sentinel-2A image of UK south east coastline, acquired on 4th September 2017. Data courtesy of ESA/Copernicus.

Do you recognise yourself in any these five signs? if so, you’re definitely working in the Earth observation industry.

  1. You have a favourite satellite or instrument, or image search tool.
  2. When a satellite image appears on television, you tell everyone in the room which satellite/sensor it came from.
  3. You’ve got an irrational hatred for clouds (unless you’re working on clouds or using radar images).
  4. Anything space related happens and your family asks whether you’re involved with it, and thinks you know everyone who works at NASA or ESA.
  5. Your first reaction to seeing an interesting location isn’t that you should plan to go there. Instead, you wonder whether it would make a good satellite image.

We tick all of these signs at Pixalytics! Last week we suffered from number five when we saw a snippet from the season finale of the UK TV programme ‘Liar’. It wasn’t a programme we’d watched, but as we caught an atmospheric panning shot of the location, and only one thought when through our minds, ‘That would make a great satellite image!’

It was a stunning shot of a marshland with water interwoven between islands. Without knowing anything about the programme, we were expecting it to have been filmed in a far flung Nordic location. Following a bit of impromptu googling we were surprised to discover it was actually Tollesbury on the Essex coast in the UK. It also turns out that we were late to the party on the discovery of the programme and the location.

Sentinel-2A image of Mersea Island and surrounding area, acquired on 4th September 2017. Data courtesy of ESA/Copernicus.

The image on the right shows Mersea Island, which has brown saltmarshes above it within the adjacent inlets of the Blackwater Estuary. To the left of the island is the village of Tollesbury and the Tollesbury marina, which is located within the saltmarshes. This area is the largest of the saltmarshes of Essex, but only the fifth largest of the UK. They play a key role in flood protection and can reduce the height of damaging waves in storm surge conditions by 20%. However, they are disappearing due to sea erosion that’s caused a sixty percent reduction in the last 20 years.

The image itself is a zoomed in pseudo-true-colour composite at 10 m spatial resolution using data acquired by Sentinel-2A on the 4th September 2017 – a surprisingly cloud free day for the UK. The full Sentinel-2 image can be seen at the top of the blog.

As often happens when we look in detail at satellite images, something catches our eye. This time it was the three bluish looking strips just above Mersea island. These are the 82,944 solar panels which make up Langenhoe Solar Farm, and have the capacity to generate 21.15 MW of solar power.

So how many of you recognise our signs of working in Earth observation? Any you think we’ve missed? Get in touch, let us know!

Inspiring the Next Generation of EO Scientists

Artist's rendition of a satellite - 3dsculptor/123RF Stock Photo

Artist’s rendition of a satellite – 3dsculptor/123RF Stock Photo

Last week, whilst Europe’s Earth Observation (EO) community was focussed on the successful launch of Sentinel-5P, over in America Tuesday 10th October was Earth Observation Day!

This annual event is co-ordinated by AmericaView, a non-profit organisation, whose aim to advance the widespread use of remote sensing data and technology through education and outreach, workforce development, applied research, and technology transfer to the public and private sectors.

Earth Observation Day is a Science, Technology, Engineering, and Mathematics (STEM) event celebrating the Landsat mission and its forty-five year archive of imagery. Using satellite imagery provides valuable experience for children in maths and sciences, together with introducing subjects such as land cover, food production, hydrology, habitats, local climate and spatial thinking. The AmericaView website contains a wealth of EO materials available for teachers to use, from fun puzzles and games through to a variety of remote sensing tutorials. Even more impressive is that the event links schools to local scientists in remote sensing and geospatial technologies. These scientists provide support to teachers including giving talks, helping design lessons or being available to answer student’s questions.

This is a fantastic event by AmericaView, supporting by wonderful resources and remote sensing specialists. We first wrote about this three years ago, and thought the UK would benefit from something similar. We still do. The UK Space Agency recently had an opportunity for organisations interested in providing education and outreach activities to support EO, satellite launch programme or the James Webb Space Telescope. It will be interesting to see what the successful candidates come up with.

At Pixalytics we’re passionate about educating and inspiring the next generation of EO scientists. For example, we regularly support the Remote Sensing and Photogrammetry Society’s Wavelength conference for students and early career scientists; and sponsored the Best Early-Career Researcher prize at this year’s GISRUK Conference. We’re also involved with two exciting events at Plymouth’s Marine Biological Association, a Young Marine Biologists (YMB) Summit for 12-18 year olds at the end of this month and their 2018 Postgraduate conference.

Why is this important?
The space industry, and the EO sector, is continuing to grow. According to Euroconsult’s ‘Satellites to Be Built & Launched by 2026 – I know this is another of the expensive reports we highlighted recently – there will be around 3,000 satellites with a mass above 50 kg launched in the next decade – of which around half are anticipated as being used for EO or communication purposes. This almost doubles the number of satellites launched in the last ten years and doesn’t include the increasing number of nano and cubesats going up.

Alongside the number of satellites, technological developments mean that the amount of EO data available is increasing almost exponentially. For example, earlier this month World View successfully completed multi-day flight of its Stratollite™ service, which uses high-altitude balloons coupled with the ability to steer within stratospheric winds. They can carry a variety of sensors, a mega-pixel camera was on the recent flight, offering an alternative vehicle for collecting EO data.

Therefore, we need a future EO workforce who are excited, and inspired, by the possibilities and who will take this data and do fantastic things with it.

To find that workforce we need to shout about our exciting industry and make sure everyone knows about the career opportunities available.

No Paraskevidekatriaphobia For Sentinel-5P!

Sentinel-5P carries the state-of-the-art Tropomi instrument. Image courtesy of ESA/ATG medialab.

On Friday the latest of the Sentinel satellites, Sentinel-5P, is due to be launched at 09.27 GMT from Plesetsk Cosmodrome in Russia.

Friday is the 13th October, and within parts of the western world this is considered to be an unlucky date – although in Italy its Friday 17th which is unlucky and in some Spanish speaking countries it is Tuesday the 13th. Fear of Friday 13th is known as paraskevidekatriaphobia, although evidently it isn’t something Sentinel-5P worries about!

Sentinel-5 Precursor, to give the full title, is dedicated to monitoring our atmosphere. It will create maps of the various trace gases such as nitrogen dioxide, ozone, formaldehyde, sulphur dioxide, methane and carbon monoxide alongside aerosols in our atmosphere. The mission will also support the monitoring of air pollution over cities, volcanic ash, stratospheric ozone and surface UV radiation.

An internal view of the Copernicus Sentinel-5P satellite. Image courtesy of ESA/ATG medialab.

The satellite itself is a hexagonal structure as can be seen in the image to the right. It has three solar wings which will be deployed once the polar sun-synchronous 824 km low earth orbit has been achieved. Sentinel-5P will be orbiting three and half minutes behind NOAA’s Suomi-NPP satellite which carries the Visible/Infrared Imager and Radiometer Suite (VIIRS). This synergy will allow the high resolution cloud mask from VIIRS to be used within the calculations for methane from Sentinel-5P.

Within the hexagonal body the main scientific instrument is the Tropospheric Monitoring Instrument (Tropomi). This is a push-broom imaging spectrometer covering a spectral range from ultraviolet and visible (270–495 nm), near infrared (675–775 nm) and shortwave infrared (2305–2385 nm). The spatial resolution of the instrument will be 7 km x 3.5 km. However, one of the exciting elements of this instrument is that it will have a swath width of 2600 km meaning it can map almost the entire planet every day. It will have full daily surface coverage of radiance and reflectance measurements for latitudes > 7° and < -7°, and better than 95 % coverage for other latitudes.

The key role of Sentinel-5P is to reduce the data gap between the end of the Envisat mission in May 2012 and the launch of Sentinel-5 in 2020. Sentinel-5, and Sentinel-4, will be instruments onboard meteorological satellites operated by Eumetsat and both will be used to monitor the atmosphere.

The timing of Sentinel-5 is interesting for those of within the UK given that almost three quarters of the funding from Copernicus comes from the European Union. By this time Brexit will have occurred and it is currently unclear how that will impact on our future involvement in this programme. This also applies to the work announced at the end of last month to look at an expansion of the Sentinel missions. Invitations to tender (ITT) are due to be issued in the near future, and given our previous blogs on potential limitations and issues, it will be interesting to see which UK companies bid, and whether they will be successful.

Sentinel-5P will help improve our understanding of the processes within the atmosphere which affect our climate, the air we breathe and ultimately the health of everyone on the planet.

Can You See The Great Wall of China From Space?

Area north of Beijing, China, showing the Great Wall of China running through the centre. Image acquired by Sentinel-2 on 27th June 2017. Data courtesy of ESA/Copernicus.

Dating back over two thousand three hundred years, the Great Wall of China winds its way from east to west across the northern part of the country. The current remains were built during Ming Dynasty and have a length of 8 851.8 km according to 2009 work by the Chinese State Administration of Cultural Heritage and National Bureau of Surveying and Mapping Agency. However, if you take into account the different parts of the wall built by other dynasties, its length is almost twenty two thousand kilometres.

The average height of the wall is between six and seven metres, and its width is between four to five metres. This width would allow five horses, or ten men, to walk side by side. The sheer size of the structure has led people to believe that it could be seen from space. This was first described by William Stukeley in 1754, when he wrote in reference to Hadrian’s Wall that ‘This mighty wall of four score miles in length is only exceeded by the Chinese Wall, which makes a considerable figure upon the terrestrial globe, and may be discerned at the Moon.’

Despite Stukeley’s personal opinion not having any scientific basis, it has been repeated many times since. By the time humans began to go into space, it was considered a fact. Unfortunately, astronauts such as Buzz Aldrin, Chris Hatfield and even China’s first astronaut, Yang Liwei, have all confirmed that the Great Wall is not visible from space by the naked eye. Even Pixalytics has got a little involved in this debate. Two years ago we wrote a blog saying that we couldn’t see the wall on Landsat imagery as the spatial resolution was not small enough to be able to distinguish it from its surroundings.

Anyone who is familiar with the QI television series on the BBC will know that they occasionally ask the same question in different shows and give different answers when new information comes to light. This time it’s our turn!

Last week Sam was a speaker at the TEDx One Step Beyond event at the National Space Centre in Leicester – you’ll hear more of that in a week or two. However, in exploring some imagery for the event we looked for the Great Wall of China within Sentinel-2 imagery. And guess what? We found it! In the image at the top, the Great Wall can be seen cutting down the centre from the top left.

Screenshot of SNAP showing area north of Beijing, China. Data acquired by Sentinel-2 on 27th June 2017. Data courtesy of ESA/Copernicus.

It was difficult to spot. The first challenge was getting a cloud free image of northern China, and we only found one covering our area of interest north of Beijing! Despite Sentinel-2 having 10 m spatial resolution for its visible wavelengths, as noted above, the wall is generally narrower. This means it is difficult to see the actual wall itself, but it is possible to see its path on the image. This ability to see very small things from space by their influence on their surroundings is similar to how we are able to spot microscopic phytoplankton blooms. The image on the right is a screenshot from Sentinel Application Platform tool (SNAP) which shows the original Sentinel-2 image of China on the top left and the zoomed section identifying the wall.

So whilst the Great Wall of China might not be visible from space with the naked eye, it is visible from our artificial eyes in the skies, like Sentinel-2.

Brexit: Science & Space

Artist's rendition of a satellite - paulfleet/123RF Stock Photo

Artist’s rendition of a satellite – paulfleet/123RF Stock Photo

Brexit currently dominates UK politics. Whilst it’s clear the UK is leaving the European Union (EU) in March 2019, the practical impact, and consequences, are still a confused fog hanging over everything. The UK Government Department for Exiting the European Union has been issuing position papers to set out how it sees the UK’s future arrangements with the EU.

Last week, the ‘Collaboration in science and innovation: a future partnership paper’ was issued. Given our company’s focus we were eager to see what was planned. Unfortunately, like a lot of the UK Government pronouncements on Brexit, it is high on rhetoric, but low on any helpful, or new, information or clarity.

It begins with a positive, but perhaps rather obvious, statement, stating that one of the UK’s core objectives is to ‘seek agreement to continue to collaborate with European partners on major science, research and technology initiatives.’

Future Partnership with EU Principles
Key aspects of the UK’s ambition for the future partnership include:

  • Science & Innovation collaboration is not only maintained, but strengthened.
  • With its strong research community, the UK wants an ambitious agreement for continued research co-operation.
  • Government wants the UK to be a hub for international talent in research, and to welcome the brightest and best people from around the world.

The principles are followed by four particular areas the UK wants to discuss with the EU. Interestingly, it specifically outlines how non-EU countries currently participate in each of these areas, which are Research & Innovation Framework Programmes, Space Programmes, Nuclear R&D and Defence R&D.

Research & Innovation Framework Programmes
Horizon 2020 is highlighted as the UK ranks top across the EU in terms of contracts and participants in it. The Government confirms its commitment to underwriting any projects submitted whilst the UK is still an EU member.

Support for this programme is good, however with an end date of 2020 it is going to be equally important to be a strong partner of whatever research funding programme that is going to follow.

Space Programmes
As we have described before the European Space Agency is not an EU institution, and so is not impacted by Brexit – a fact reinforced by the paper. Three key EU, rather than ESA, led space programmes are highlighted:

  • Galileo Navigation and Positioning System – Issues here surround both the use of the system and its ongoing development. UK firms have been key suppliers for this work including Surrey Satellite Technology Ltd (SSTL), Qinetiq, CGI, Airbus and Scisys.
  • Copernicus – The Copernicus Earth Observation data is freely available to anyone in the world. The key element here is about being at the table to influence the direction. Although, the paper does refer to existing precedents for third party participation.
  • Space Surveillance and Tracking – this is a new programme.

The paper states that given the unique nature of space programmes, the ‘EU and UK should discuss all options for future cooperation including new arrangements.’

What Is Not Said
There are a lot of positive and welcome words here, but also a huge amount unsaid, for example:

  • Interconnectivity: Science and innovation happens when researchers work together, so the UK’s approach to the movement of people is fundamental. Will the brightest and best be allowed to come and work here, and will they want to?
  • Education: Education is fundamental to this area, yet it does not merit a single mention in the paper. New researchers and early career scientists benefit hugely from programmes such as Erasmus, will our involvement in these continue?
  • Financial Contribution: How much is the UK willing to pay to be part of science and innovation programmes? The paper notes any financial contribution will have to be weighed against other spending priorities. Not exactly hugely encouraging.
  • Contractual Issues: Part of the issue with Galileo is that the contracts specifically exclude non-EU countries from involvement.. Whilst, it is possible to see that the UK could negotiate use of Galileo, continued involvement as a supplier may be more difficult.

The UK wants dialogue with the EU on far-reaching science and innovation agreement. This ambition is to be applauded, but we are a very long way away from that point. We hope both parties are able to work together to get there.

Flip-Sides of Soil Moisture

Soil Moisture changes between 19th and 25th August around Houston, Texas due to rainfall from Hurricane Harvey. Courtesy of NASA Earth Observatory image by Joshua Stevens, using soil moisture data courtesy of JPL and the SMAP science team.

Soil moisture is an interesting measurement as it can be used to monitor two diametrically opposed conditions, namely floods and droughts. This was highlighted last week by maps produced from satellite data for the USA and Italy respectively. These caught our attention because soil moisture gets discussed on a daily basis in the office, due to its involvement in a project we’re working on in Uganda.

Soil moisture can have a variety of meanings depending on the context. For this blog we’re using soil moisture to describe the amount of water held in spaces between the soil in the top few centimetres of the ground. Data is collected by radar satellites which measure microwaves reflected or emitted by the Earth’s surface. The intensity of the signal depends on the amount of water in the soil, enabling a soil moisture content to be calculated.

You can’t have failed to notice the devastating floods that have occurred recently in South Asia – particularly India, Nepal and Bangladesh – and in the USA. The South Asia floods were caused by monsoon rains, whilst the floods in Texas emanated from Hurricane Harvey.

Soil moisture measurements can be used to show the change in soil saturation. NASA Earth Observatory produced the map at the top of the blogs shows the change in soil moisture between the 19th and 25th August around Houston, Texas. The data is based on measurements acquired by the Soil Moisture Active Passive (SMAP) satellite, which uses a radiometer to measure soil moisture in the top 5 centimetres of the ground with a spatial resolution of around 9 km. On the map itself the size of each of the hexagons shows how much the level of soil moisture changed and the colour represents how saturated the soil is.

These readings have identified that soil moisture levels got as high as 60% in the immediate aftermath of the rainfall, partly due to the ferocity of the rain, which prevented the water from seeping down into the soil and so it instead remained at the surface.

Soil moisture in Italy during early August 2017. The data were compiled by ESA’s Soil Moisture CCI project. Data couresy of ESA. Copyright: C3S/ECMWF/TU Wien/VanderSat/EODC/AWST/Soil Moisture CCI

By contrast, Italy has been suffering a summer of drought and hot days. This year parts of the country have not seen rain for months and the temperature has regularly topped one hundred degrees Fahrenheit – Rome, which has seventy percent less rainfall than normal, is planning to reduce water pressure at night for conservation efforts.

This has obviously caused an impact on the ground, and again a soil moisture map has been produced which demonstrates this. This time the data was come from the ESA’s Soil Moisture Climate Change Initiative project using soil moisture data from a variety of satellite instruments. The dataset was developed by the Vienna University of Technology with the Dutch company VanderSat B.V.

The map shows the soil moisture levels in Italy from the early part of last month, with the more red the areas, the lower the soil moisture content.

Soil moisture is a fascinating measurement that can provide insights into ground conditions whether the rain is falling a little or a lot.

It plays an important role in the development of weather patterns and the production of precipitation, and is crucial to understanding both the water and carbon cycles that impact our weather and climate.