If no-one is there when an iceberg is born, does anyone see it?

Larsen C ice Shelf including A68 iceberg. Image acquired by MODIS Aqua satellite on 12th July 2017. Image courtesy of NASA.

The titular paraphrasing of the famous falling tree in the forest riddle was well and truly answered this week, and shows just how far satellite remote sensing has come in recent years.

Last week sometime between Monday 10th July and Wednesday 12th July 2017, a huge iceberg was created by splitting off the Larsen C Ice Shelf in Antarctica. It is one of the biggest icebergs every recorded according to scientists from Project MIDAS, a UK-based Antarctic research project, who estimate its area of be 5,800 sq km and to have a weight of more a trillion tonnes. It has reduced the Larsen C ice Shelf by more than twelve percent.

The iceberg has been named A68, which is a pretty boring name for such a huge iceberg. However, icebergs are named by the US National Ice Centre and the letter comes from where the iceberg was originally sited – in this case the A represents area zero degrees to ninety degrees west covering the Bellingshausen and Weddell Seas. The number is simply the order that they are discovered, which I assume means there have been 67 previous icebergs!

After satisfying my curiosity on the iceberg names, the other element that caught our interest was the host of Earth observation satellites that captured images of either the creation, or the newly birthed, iceberg. The ones we’ve spotted so far, although there may be others, are:

  • ESA’s Sentinel-1 has been monitoring the area for the last year as an iceberg splitting from Larsen C was expected. Sentinel-1’s SAR imagery has been crucial to this monitoring as the winter clouds and polar darkness would have made optical imagery difficult to regularly collect.
  • Whilst Sentinel-1 was monitoring the area, it was actually NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) instrument onboard the Aqua satellite which confirmed the ‘birth’ on the 12th July with a false colour image at 1 km spatial resolution using band 31 which measures infrared signals. This image is at the top of the blog and the dark blue shows where the surface is warmest and lighter blue indicates a cooler surface. The new iceberg can be seen in the centre of the image.
  • Longwave infrared imagery was also captured by the NOAA/NASA Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite on July 13th.
  • Similarly, NASA also reported that Landsat 8 captured a false-colour image from its Thermal Infrared Sensor on the 12th July showing the relative warmth or coolness of the Larsen C ice shelf – with the area around the new iceberg being the warmest giving an indication of the energy involved in its creation.
  • Finally, Sentinel-3A has also got in on the thermal infrared measurement using the bands of its Sea and Land Surface Temperature Radiometer (SLSTR).
  • ESA’s Cryosat has been used to calculate the size of iceberg by using its Synthetic Aperture Interferometric Radar Altimeter (SIRAL) which measured height of the iceberg out of the water. Using this data, it has been estimated that the iceberg contains around 1.155 cubic km of ice.
  • The only optical imagery we’ve seen so far is from the DEMIOS1 satellite which is owned by Deimos Imaging, an UrtheCast company. This is from the 14th July and revealed that the giant iceberg was already breaking up into smaller pieces.

It’s clear this is a huge iceberg, so huge in fact that most news agencies don’t think that readers can comprehend its vastness, and to help they give a comparison. Some of the ones I came across to explain its vastness were:

  • Size of the US State of Delaware
  • Twice the size of Luxembourg
  • Four times the size of greater London
  • Quarter of the size of Wales – UK people will know that Wales is almost an unofficial unit of size measurement in this country!
  • Has the volume of Lake Michigan
  • Has the twice the volume of Lake Erie
  • Has the volume of the 463 million Olympic-sized swimming pools; and
  • My favourite compares its size to the A68 road in the UK, which runs from Darlington to Edinburgh.

This event shows how satellites are monitoring the planet, and the different ways we can see the world changing.

Remote Sensing Goes Cold

Average thickness of Arctic sea ice in spring as measured by CryoSat between 2010 and 2015. Image courtesy of ESA/CPOM

Remote sensing over the Polar Regions has poked its head above the ice recently.

On the 8th February The Cryosphere, a journal of the European Geosciences Union, published a paper by Smith et al titled ’Connected sub glacial lake drainage beneath Thwaites Glacier, West Antarctica’. It described how researchers used data from ESA’s CryoSat-2 satellite to look at lakes beneath a glacier.

This work is interesting from a remote sensing viewpoint as it is a repurposing of Cryosat-2’s mission. It’s main purpose is to measure the thickness of the ice sheets and marine ice cover using its Synthetic Aperture Radar (SAR)/Interferometric Radar Altimeter, known as SIRAL, and it can detect millimetre changes in the elevation of both ice-sheets and sea-ice.

The team were able to use this data to determine that the ice of the glacier had subsided by several metres as water had drained away from four lakes underneath. Whilst the whole process took place between June 2012 and January 2014, the majority of the drainage happened in a six month period. During this time it’s estimated that peak drainage was around 240 cubic metre per second, which is four times faster than the outflow of the River Thames into the North Sea.

We’ve previously highlighted that repurposing data – using data for more purposes than originally intended – is going to be one of the key future innovation trends for Earth Observation.

Last week, ESA also described how Sentinel-1 and Sentinel-2 data have been used over the last five months to monitor a crack in the ice near to the Halley VI research base of the British Antarctic Survey (BAS). The crack, known as Halloween Crack, is located on the Brunt ice Shelf in the Wedell Sea sector of Antarctica and was identified last October. The crack grew around 600 m per day during November and December, although it has since slowed to only one third of that daily growth.

Since last November Sentinel-2 has been acquiring optical images at each overflight, and this has been combined with SAR data from the two Sentinel-1 satellites. This SAR data will be critical during the Antarctic winter when there are only a few hours of daylight and a couple of weeks around mid-June when the sun does not rise.

This work hit the headlines as BAS decided to evacuate their base for the winter, due to the potential threat. The Halley VI base, which was only 17km from the crack, is the first Antarctic research station to be specifically designed to allow relocation to cope with this sort of movement in the ice shelf. It was already planned to move the base 23 km further inland, and this was successfully completed on the 2nd February. Further movement will depend on how the Halloween Crack develops over the winter.

Finally, the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) project was announced this week at the annual meeting of the American Association for the Advancement of Science. Professor Markus Rex outlined the project, which will sail a research vessel into the Arctic sea ice and let it get stuck so it can drift across the North Pole. The vessel will be filled with a variety of remote sensing in-situ instruments, and will aim to collect data on how the climate is changing in this part of the world through measuring the atmosphere-ice-ocean system.

These projects show that the Polar Regions have a lot of interest, and variety, for remote sensing.

High Noon for ESA Funding

Sentinel-2 Image of Plymouth from 2016. Data courtesy of Copernicus/ESA.

Sentinel-2 Image of Plymouth from 2016. Data courtesy of Copernicus/ESA.

The future direction of the space industry in Europe is set to be debated at the European Space Agency (ESA) Ministerial Council taking place at the start of December. It will look at the Space Strategy for Europe which we reviewed last week, and crucially will set ESA’s budget for the few next years.

The Council is the governing body of ESA and each of the 22 member states is represented, plus Canada. The Council is chaired by ESA’s Director General Jan Woerner, and he gave a press briefing in Paris earlier this week in advance of the meeting.

Sadly, I was unable to go to France for the meeting; but luckily Peter B de Selding from Space News was there and produced an excellent article which highlighted the key points including:

  • ESA is seeking an €11 billion settlement
  • Concern over the Norway’s proposed 75% contribution reduction
  • The ExoMars Programme, which hit the headlines earlier this year when the Schiaparelli lander crashed on its descend to the Mars surface, has a funding gap of €400 million.
  • €800 million is being sought to continue the collaboration with NASA on the International Space Station until 2024

The headline message on money is clearly the requested €11 billion settlement. In 2016 the ESA budget was €5.25 billion, of which almost 30% was income from the European Union (EU), Eumetsat and other programmes. The remaining 70% came from the contributions of each member state and Canada, and it is these future contributions that will be discussed at the Ministerial. This year the biggest contributor was Germany (€872.6 m), followed by France (€844.5 m) and Italy (€512 m) – between them these three accounted for almost 60% of the ESA member state budget.

For us, Pixalytics and the UK, there were a couple of interesting points. Firstly, ESA’s Earth Observation Envelope Programmes (EOEP-5) has had a 12.5% funding cut reducing their budget down to €1.4 bn for the period 2017 – 2025. It’s not currently clear what impact this reduction will, or will not, have on existing and planned activities.

Secondly, and for the second week running the blog has had to mention the B word. We’ve previously written about the fact that ESA and the EU are different organisations, and that Brexit does not directly impact our involvement with ESA – a point reinforced by the Director General at the briefing.

Indirectly though, Brexit impacts, if not dominates, the political and financial landscape of the country and as such will have affected the discussions surrounding our ESA contribution commitment. For example:

  • Dropping Value Of Sterling: The pound has dropped by over 13% since the EU Referendum, significantly increasing the cost to the UK of our ESA contribution which was €13.2 m in 2016.
  • Budget Pressures: In addition to the drop in the pound, the UK Space Agency has to compete with every other Government Department for funding. Given the current austerity financial approach, coupled with the additional costs of dealing with Brexit, money is tight.
  • Space Industry Profile: Every industry is currently fighting to get their agenda’s onto Government Minister’s desk to ensure they get then ‘best deal from Brexit’. Space is no different. We may not have the London centre of the financial sector or the emotional impact of the farmers and fisherman, but we are a strong and important part of the economy.

We need Ministers to understand our industry, and to ensure that they support us as much as possible. This means, as we said last week, that we need to give a positive commitment to our ongoing involvement with ESA and a strong financial contribution at the Ministerial in Lucerne on the 1st and 2nd of December.

We await the outcome with interest!

Gliding Across The Ice

ESA’s Earth Explorer CryoSat. Image courtesy of ESA/AOES Medialab.

ESA’s Earth Explorer CryoSat. Image courtesy of ESA/AOES Medialab.

There’s been a flurry of reports in the last couple of weeks, reporting melting ice and retreating glaciers in Greenland and the Himalayas respectively.

A paper by McMillan et al (2016), titled ‘A high-resolution record of Greenland mass balance’ and published in Geophysical Research Letters earlier this month, highlighted that Greenland’s melting ice has contributed twice as much to sea level rise than in the previous twenty years. The research used CryoSat-2 radar altimetry between 1 January 2011 and 31 December 2014 to measure elevation changes in the Greenland ice.

The main instrument on ESA’s CryoSat-2 satellite is a Synthetic Aperture Radar (SAR)/Interferometric Radar Altimeter known as SIRAL, although also carries a second version of this instrument as a back-up. The SIRAL instrument has been enhanced to detect millimetre changes in the elevation of both ice-sheets and sea-ice. It sends out bursts of radar pulses, with an interval of 50 μs between them, covering a 250 m wide strip of the Earth and measures the time of the return signal to determine the height of the satellite above the Earth. It requires a very accurate measurement of its position to calculate this, and so it also carries a Doppler Orbit and Radio Positioning Integration by Satellite (DORIS) instrument to determine its orbit.

The research team discovered that the Greenland Ice Sheet lost an average of 269 ± 51 Gt/yr of snow and ice during the investigative period, which compared well with other independent measurements from sensors such as the Gravity Recovery and Climate Experiment (GRACE) satellite and results from climate models. This snow and ice loss corresponds to a 0.75 mm contribution to global sea-level rise each year.

It was reported this week that research undertaken by the Indian Space Research Organisation, Wadia Institute of Himalayan Geology and other institutions have revealed that the majority of the glaciers in India are retreating; albeit at different rates. Using remote sensing data up to 2006, the study looked at 82 glaciers in the Bhagirathi and Alaknanda river basins and found that there had been an overall loss of 4.6% of the glaciers within the region. The Dokriani glacier in Bhagirathi is retreating between 15 and 20 metres per year since 1995, whereas the Chorabari glacier in the Alaknanda basin is retreating 9-11 metres per year.

It’s interesting to read the retreating glacial picture alongside the research published by Schwanghart et al (2016), titled ‘Uncertainty in the Himalayan energy–water nexus: estimating regional exposure to glacial lake outburst floods’, in Environmental Research Letters. Here the research team completed the first region wide risk assessment of floods from glacial lakes, even though this only covered around a quarter dams in the Himalaya’s. The study mapped 257 dams against more than 2,300 glacial lakes within the region and found that over 20% of the dams are likely to be overwhelmed with flood water as rock systems that surround glacier-fed lakes fail. Due to the hydro-electric power needs of the region, more dams have been built in recent years, putting them closer to glacier-fed lakes.

The potential danger of this issue is demonstrated by the collapse of Zhangzangbo, a glacier-fed lake in southern Tibet, in 1981 where 20 million cubic meters of floodwater damaged hydroelectric dams and roads causing damage of approximately $4 million.

These three reports also show the potential danger melting ice and glaciers pose both locally and globally. Remote sensing data, particularly from satellites such as CryoSat-2, can help us monitor and understand whether this danger is increasing.

Satellite Data Continuity: Hero or Achilles Heel?

Average thickness of Arctic sea ice in spring as measured by CryoSat between 2010 and 2015. Image courtesy of ESA/CPOM

Average thickness of Arctic sea ice in spring as measured by CryoSat between 2010 and 2015. Image courtesy of ESA/CPOM

One of satellite remote sensing’s greatest strengths is the archive of historical data available, allowing researchers to analyse how areas change over years or even decades – for example, Landsat data has a forty year archive. It is one of the unique aspects of satellite data, which is very difficult to replicate by other measurement methods.

However, this unique selling point is also proving an Achilles Heel to industry as well, as highlighted last week, when a group of 179 researchers issued a plea to the European Commission (EC) and the European Space Agency (ESA) to provide a replacement for the aging Cryosat-2 satellite.

Cryosat-2 was launched in 2010, after the original Cryosat was lost during a launch failure in 2005, and is dedicated to the measurement of polar ice. It has a non sun-synchronous low earth orbit of just over 700 km with a 369 day ground track cycle, although it does image the same areas on Earth every 30 days. It was originally designed as three and half year mission, but is still going after six years. Although, technically it has enough fuel to last at least another five years, the risk of component failure is such that researchers are concerned that it could cease to function at any time

The main instrument onboard is a Synthetic Aperture Interferometric Radar Altimeter (SIRAL) operating in the Ku Band. It has two antennas that form an interferometer, and operates by sending out bursts of pulses at intervals of only 50 microseconds with the returning echoes correlated as a single measurement; whereas conventional altimeters send out single pulses and wait for the echo to return before sending out another pulse. This allows it to measure the difference in height between floating ice and seawater to an accuracy of 1.3cm, which is critical to measurement of edges of ice sheets.

SIRAL has been very successful and has offered a number of valuable datasets including the first complete assessment of Arctic sea-ice thickness, and measurements of the ice sheets covering Antarctica and Greenland. However, these datasets are simply snapshots in time. Scientists want to continue these measurements in the coming years to improve our understanding of how sea-ice and ice sheets are changing.

It’s unlikely ESA will provide a follow on satellite, as their aim is to develop new technology and not data continuity missions. This was part of the reason why the EU Copernicus programme of Sentinel satellites was established, whose aim is to provide reliable and up to date information on how our planet and climate is changing. The recently launched Sentinel-3 satellite can undertake some of the measurements of Cryosat-2, it is not a replacement.

Whether the appeal for a Cryosat-3 will be heard is unclear, but what is clear is thought needs to be given to data continuity with every mission. Once useful data is made available, there will be a desire for a dataset to be continued and developed.

This returns us to the title of the blog. Is data continuity the hero or Achilles Heel for the satellite remote sensing community?

Sentinel-3 Sets Sail

Artist's view of Sentinel-3. Image courtesy of ESA–Pierre Carril.

Artist’s view of Sentinel-3. Image courtesy of ESA–Pierre Carril.

At 17.57 GMT yesterday (16th February 2016) Sentinel-3 set sail from the Plesetsk Space Centre in Russia, heading for its 814 km sun-synchronous low Earth orbit. Like all the other Sentinel launches, we were at home watching the live feed!

This is the third Sentinel launch of the European Commission’s Copernicus Programme, following Sentinel-1 and 2. Sentinel-3, like its predecessors, will be part of a twin satellite constellation with Sentinel-3B’s launch expected to be in 2017.

Sentinel-3 carries four scientific instruments:

  • Sea and Land Surface Temperature Radiometer (SLSTR) will measure temperatures of both the sea and land, to an accuracy of better than 0.3 K. This instrument has 9 spectral bands with a spatial resolution of 500 m for visible/near-infrared wavelengths and 1 km for the thermal wavelengths; and has swath widths of 1420 km at nadir and 750 km looking backwards. It’s worth noting that two thermal infrared spectral wavebands are optimised for fire detection, providing the fire radiative power measurement.
  • Ocean and Land Colour Instrument (OLCI) has 21 spectral bands (400–1020 nm) focussed on ocean colour and vegetation measurements. All bands have a spatial resolution of 300 m with a swath width of 1270 km.
  • Synthetic Aperture Radar Altimeter (SRAL) which has dual frequency Ku and C bands. It offers 300 m spatial resolution after SAR processing, and is based on the instruments from the CryoSat and Jason missions. This will be first satellite altimeter to provide 100% coverage of the Earth’s surfaces in SAR mode.
  • Microwave Radiometer (MWR) dual frequency at 23.8 & 36.5 GHz, it is used to derive atmospheric column water vapour measurements for correcting the SRAL instrument.

The scientific instruments are supported by four positioning/navigation instruments to ensure the satellite maintains its precise orbit.

Sentinel-3 will mainly be focussing on ocean measurements and will include the measurement of sea-surface height (similar to the recently launched Jason-3); however it will also measure sea surface temperature, ocean colour, surface wind speed, sea ice thickness and ice sheets. Whereas over land the satellite will provide indices of vegetation, measuring the height of rivers and lakes and help monitor wildfires.

Sentinel-3 is a very exciting satellite for us, as the data and products it will produce are very much within the wheelhouse of the services that Pixalytics offers. Sam’s background is in ocean colour, she’s world renown for atmospheric correction research and we offer a variety of agritech services including vegetation indices. You can probably now see why we’re so excited!

The satellite is currently in its commissioning phases where ESA tests the data produced by the sensors. This is undertaken in conjunction with a group of users, and Pixalytics is one of them! This phase is expected to last five months, after which the satellite will be transferred to Eumetsat and the data should be released.

Like all the data from the Copernicus programme, it will be offered free of charge to users. This will challenge organisations, like us, to see what innovative services we can offer with this new data stream. Exciting times ahead!

How to Measure Heights From Space?

Combining two Sentinel-1A radar scans from 17 and 29 April 2015, this interferogram shows changes on the ground that occurred during the 25 April earthquake that struck Nepal. Contains Copernicus data (2015)/ESA/Norut/PPO.labs/COMET–ESA SEOM INSARAP study

Combining two Sentinel-1A radar scans from 17 and 29 April 2015, this interferogram shows changes on the ground that occurred during the 25 April earthquake that struck Nepal. Contains Copernicus data (2015)/ESA/Norut/PPO.labs/COMET–ESA SEOM INSARAP study

Accurately measuring the height of buildings, mountains or water bodies is possible from space. Active satellite sensors send out pulses of energy towards the Earth, and measure the strength and origin of the energy received back enabling them to determine of the heights of objects struck by the pulse energy on Earth.

This measurement of the time it takes an energy pulse to return to the sensor, can be used for both optical and microwave data. Optical techniques such as Lidar send out a laser pulse; however within this blog we’re going to focus on techniques using microwave energy, which operate within the Ku, C, S and Ka frequency bands.

Altimetry is a traditional technique for measuring heights. This type of technique is termed Low Resolution Mode, as it sends out a pulse of energy that return as a wide footprint on the Earth’s surface. Therefore, care needs to be taken with variable surfaces as the energy reflected back to the sensor gives measurements from different surfaces. The signal also needs to be corrected for speed of travel through the atmosphere and small changes in the orbit of the satellite, before it can be used to calculate a height to centimetre accuracy. Satellites that use this type of methodology include Jason-2, which operates at the Ku frequency, and Saral/AltiKa operating in the Ka band. Pixalytics has been working on a technique to measure river and flood water heights using this type of satellite data. This would have a wide range of applications in both remote area monitoring, early warning systems, disaster relief, and as shown in the paper ‘Challenges for GIS remain around the uncertainty and availability of data’ by Tina Thomson, offers potential for the insurance and risk industries.

A second methodology for measuring heights using microwave data is Interferometric Synthetic Aperture Radar (InSAR), which uses phase measurements from two or more successive satellite SAR images to determine the Earth’s shape and topography. It can calculate millimetre scale changes in heights and can be used to monitor natural hazards and subsidence. InSAR is useful with relatively static surfaces, such as buildings, as the successive satellite images can be accurately compared. However, where you have dynamic surfaces, such as water, the technique is much more difficult to use as the surface will have naturally changed between images. Both ESA’s Sentinel-1 and the CryoSat-2 carry instruments where this technique can be applied.

The image at the top of the blog is an interferogram using data collected by Sentinel-1 in the aftermath of the recent earthquake in Nepal. The colours on the image reflect the movement of ground between the before, and after, image; and initial investigations from scientists indicates that Mount Everest has shrunk by 2.8 cm (1 inch) following the quake; although this needs further research to confirm the height change.

From the largest mountain to the smallest changes, satellite data can help measure heights across the world.

Geo-Business 2014!

We’re on a company road trip this week! By the time you read this blog we will both be attending the Geo-Business 2014 event at the Business Design Centre in London – technically my attendance will be dependent on trains as I won’t be arriving until Wednesday morning.

As we highlighted last week we’re at the conference to promote our new service of the virtual water gauge. At the very moment this blog is published to the world, Sam will in the Coastal and Hydrographic Session preparing to give her presentation on Using satellite altimetry to measure water height in estuaries, rivers and lakes – she’s due to talk at 12.50pm in Room A, so you’ve still got time to get there.

Sam’s presentation will look the sites where she’s used satellite based radar altimeters to determine water heights. The first study site was the Congo river, where we had the European/USA Jason-2 mission tracks intersecting the river at several locations, and the requirement was for a long time-series analysis plus the potential for new data collection going forward. Sam also looked at the extensive flooding in the Somerset Levels in south-west UK, from the end of 2013 to early 2014. In this instance, the location was covered by the 2013 launched India-France SARAL/AltiKa mission, and the result showed the depth of flood water being in the 2-4 m range, which seems to agree with personal reports (on the news yesterday morning there was an article where the depth of flood water was described as around 10 foot). Future work involves increasing the data density, and hence confidence in the height estimates, by including the ESA CryoSat-2 mission that was launched in 2010.

There’s a rich conference programme at the event which Sam will be visiting, plus over 80 commercial workshops to continue my professional development in all things geospatial. We’ve also got meetings arranged with a number of exhibitors to discuss how we might be able to work together in the future. If you’re at Geo-Business and want to catch up with us to discuss virtual water gauge or any earth observation issues, get in touch via Twitter at @pixalytics or on LinkedIn. We’d love to see you!

We’ve also decided that this will be a two blog week. We’ll give you an update on how things have gone on the first day of Geo-Business with Sam’s presentation, plus we’ve also got some exciting news to announce on a collaboration we’ve been working on recently. See you tomorrow …

EO applications and the ESA Living Planet Symposium

Last week’s blog looked at developments in the technology providing Earth Observation (EO); however the industry is evolving and much more attention is now being paid to downstream activities. It’s no longer good enough to get a satellite to collect data, everyone has to think about how applications will, and can, use the data.

At the Living Planet Symposium there were presentations on the applications being developed from European Space Agency’s (ESA) CryoSat-2, which was launched in April 2010; it’s a replacement for Cryosat-1, which was lost due to a launch failure in 2005. CryoSat-2’s main focus is the monitoring of sea ice thickness in the polar oceans and ice sheets over Greenland and Antarctica. During its 3 years of full operation it has witnessed a continuing shrinkage of winter ice volume.

However, the on-board altimeter can also be used for many other applications, for example it doesn’t just acquire data over the polar regions. More interestingly the presenters also showed its potential for mapping coastal waters and inland water bodies with a spatial coverage that’s not possible from current low resolution altimeters.

Freshwater is a scarce resource, 97.5% of the earth’s water is saltwater, and given that almost three quarters of that freshwater is used in agriculture to grow food; the benefits of developing a method for remotely obtaining accurate river/lake water heights with frequent coverage are obvious.

No doubt there will be a variety of new applications developed using this freshwater data over the coming period. However, these applications need to have one eye on the next significant revolution in EO; data visualisation. It’s becoming vital that data is made available in a form that is understandable for non-scientists, and this will be the subject of next weeks blog!