To TEDx Speaking and Beyond!

Back in April I received an invitation to speak at the ‘One Step Beyond’ TEDx event organised at the National Space Centre in Leicester, with my focus on the Blue Economy and Earth Observation (EO).

We’ve been to a few TEDx events in the past and they’ve always been great, and so I was excited to have the opportunity to join this community. Normally, I’m pretty relaxed about public speaking. I spend a lot of time thinking about what I’m going to say, but don’t assemble my slides until a couple of days beforehand. This approach has developed in part because I used to lecture – where I got used to talking for a while with a few slides – but also because I always like to take some inspiration from the overall mood of the event I’m talking at. This can be through hearing other speakers, attending workshops or even just walking around the local area.

TEDx, however, was different. There was a need to have the talk ready early for previewing and feedback, alongside producing stunning visuals and having a key single message. So, for a change, I started with a storyboard.

My key idea was to get across the sense of wonder I and many other scientists share in observing the oceans from space, whilst also emphasising that anyone can get involved in protecting this natural resource. I echoed the event title by calling my talk “Beyond the blue ocean” as many people think of the ocean as just a blue waterbody. However, especially from space, we can see the beauty, and complexity, of colour variations influenced by the microscopic life and substances dissolved and suspended within it.

I began with an with an image called the ‘Pale Blue Dot’ that was taken by Voyager 1 at a distance of more than 4 billion miles from Earth, and then went with well-known ‘Blue Marble’ image before zooming into what we see from more conventional EO satellites. I also wanted to take the audience beyond just optical wavelengths and so displayed microwave imagery from Sentinel-1 that’s at a similar spatial resolution to my processed 15 m resolution Sentinel-2 data that was also shown.

Dr Samantha Lavender speaking at the One Step Beyond TEDx event in Leicester. Photo courtesy of TEDxLeicester

The satellite imagery included features such as wind farms, boats and phytoplankton blooms I intended to discuss. However, this didn’t quite to go to plan on my practice run through! The talk was in the planetarium at the National Space Centre, which meant the screen was absolutely huge – as you can see in the image to the right. However, with the lights on in the room the detail in the images was really difficult to see. The solution for the talk itself was to have the planetarium in darkness and myself picked out by two large spotlights, meaning that the image details were visible to the audience but I couldn’t see the audience myself.

The evening itself took place on the 21st September, and with almost two hundred in the audience I was up first. I was very happy with how it went and the people who spoke to me afterwards said they were inspired by what they’d seen. You can see for yourself, as the talk can be found here on the TEDx library. Let me know what you think!

I was followed by two other fantastic speakers who gave inspiring presentations and these are also up on the TEDx Library. Firstly, Dr Emily Shuckburgh, Deputy Head of Polar Oceans team at British Antarctic Survey discussed “How to conduct a planetary health check”; and she was followed by Corentin Guillo, CEO and Founder of Bird.i, who spoke about “Space entrepreneurship, when thinking outside the box is not enough”.

The whole event was hugely enjoyable and the team at TEDx Leicester did an amazing job of organising it. It was good to talk to people after the event, and it was fantastic that seventy percent of the audience were aged between 16 and 18. We need to do much more of this type of outreach activities to educate and inspire the next generation of scientists. Of course, for me, the day also means that I can now add TEDx Speaker to my biography!

Remote Sensing Goes Cold

Average thickness of Arctic sea ice in spring as measured by CryoSat between 2010 and 2015. Image courtesy of ESA/CPOM

Remote sensing over the Polar Regions has poked its head above the ice recently.

On the 8th February The Cryosphere, a journal of the European Geosciences Union, published a paper by Smith et al titled ’Connected sub glacial lake drainage beneath Thwaites Glacier, West Antarctica’. It described how researchers used data from ESA’s CryoSat-2 satellite to look at lakes beneath a glacier.

This work is interesting from a remote sensing viewpoint as it is a repurposing of Cryosat-2’s mission. It’s main purpose is to measure the thickness of the ice sheets and marine ice cover using its Synthetic Aperture Radar (SAR)/Interferometric Radar Altimeter, known as SIRAL, and it can detect millimetre changes in the elevation of both ice-sheets and sea-ice.

The team were able to use this data to determine that the ice of the glacier had subsided by several metres as water had drained away from four lakes underneath. Whilst the whole process took place between June 2012 and January 2014, the majority of the drainage happened in a six month period. During this time it’s estimated that peak drainage was around 240 cubic metre per second, which is four times faster than the outflow of the River Thames into the North Sea.

We’ve previously highlighted that repurposing data – using data for more purposes than originally intended – is going to be one of the key future innovation trends for Earth Observation.

Last week, ESA also described how Sentinel-1 and Sentinel-2 data have been used over the last five months to monitor a crack in the ice near to the Halley VI research base of the British Antarctic Survey (BAS). The crack, known as Halloween Crack, is located on the Brunt ice Shelf in the Wedell Sea sector of Antarctica and was identified last October. The crack grew around 600 m per day during November and December, although it has since slowed to only one third of that daily growth.

Since last November Sentinel-2 has been acquiring optical images at each overflight, and this has been combined with SAR data from the two Sentinel-1 satellites. This SAR data will be critical during the Antarctic winter when there are only a few hours of daylight and a couple of weeks around mid-June when the sun does not rise.

This work hit the headlines as BAS decided to evacuate their base for the winter, due to the potential threat. The Halley VI base, which was only 17km from the crack, is the first Antarctic research station to be specifically designed to allow relocation to cope with this sort of movement in the ice shelf. It was already planned to move the base 23 km further inland, and this was successfully completed on the 2nd February. Further movement will depend on how the Halloween Crack develops over the winter.

Finally, the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) project was announced this week at the annual meeting of the American Association for the Advancement of Science. Professor Markus Rex outlined the project, which will sail a research vessel into the Arctic sea ice and let it get stuck so it can drift across the North Pole. The vessel will be filled with a variety of remote sensing in-situ instruments, and will aim to collect data on how the climate is changing in this part of the world through measuring the atmosphere-ice-ocean system.

These projects show that the Polar Regions have a lot of interest, and variety, for remote sensing.