Earth Observation’s Flying Start to 2018

Simulated NovaSAR-S data.

Earth Observation (EO) is taking off again in 2018 with a scheduled launch of 31 satellites next Friday, 12th January, from a single rocket by the Indian Space Research Organization (ISRO). The launch will be on the Polar Satellite Launch Vehicle (PSLV-40) from the Satish Dhawan Space Centre in Sriharikota, India. ISRO has history of multiple launches, setting the world record in February 2017 with 104 satellites in one go.

The main payload next week will be Cartosat-2F, also known as Cartosat-2ER. It is the next satellite in a cartographic constellation which focuses on land observation. It carries two instruments, a high resolution multi-spectral imager and a panchromatic camera. It’s data is intended to be used in urban and rural applications, coastal land use, regulation and utility management.

At Pixalytics we’re particularly excited about the Carbonite-2 cubesat built by Surrey Satellite Technology Ltd (SSTL) which is on this launch. .

Carbonite-2 is a prototype mission to demonstrate the ability to acquire colour video images from space. It has been developed by Earth-i and SSTL, and carries an imaging system capable of delivering images with a spatial resolution of 1 m and colour video clips with a swath width of 5 km. Earth-i have already ordered five satellites from SSTL, as the first element of a constellation that will provide colour video and still imagery for the globe enabling the moving objects such as cars, ships or aircraft to be filmed. These satellites are planned for launch in 2019.

However, this isn’t the only cubesat with an EO interest on next week’s launch. In addition, there are:

  • KAUSAT 5 (Korea Aviation University Satellite) will observe the Earth using an infrared camera and measure the amount of radiation from its Low Earth Orbit (LEO).
  • Parikshit is a student satellite project from the Manipal Institute of Technology in India that carries a thermal infrared camera, using 7.5-13.5 µm wavelengths, and will be used to monitor urban heat islands, sea surface temperature and the thermal distribution of clouds around the Indian subcontinent.
  • Landmapper-BC3, a commercial satellite from Astro Digital in the USA to provide multispectral imagery at 22 m spatial resolution with a swath width of 220 km
  • ICEYE-X1 is a SAR microsatellite from the Finnish company ICEYE which is designed to provide near real-time SAR imagery using the S-Band. ICEYE is a recent start-up company who have raised $17 m in venture capital funding in the last few years. They hope to have a global imaging constellation by the end of 2020.

Amongst the remaining cubesats, there are a couple of really intriguing ones:

  • CNUSail 1 (Chungnam National University Sail) is a solar sail experiment from Chungnam National University in South Korea. It aims to successfully deploy a solar sail in LEO and then to de-orbit using the sail membrane as a drag-sail. There has been a lot of discussion around solar sails from propulsion systems through to mechanisms to clear space debris, so it will be fascinating to see the outcome.
  • IRVINE01 is the culmination of a STEM project started in 1999 in six public high schools in Irvine, California, which has given students the experience of building, testing and launching a cubesat to inspire the next generation of space scientists. This is a fantastic project!

We’re also really excited about the launch of the NovaSAR-S cubesat, which was also originally planned to be on this launch (as reflected in the first version of this blog). It is going to be launched later this year. NovaSAR-S, also built by SSTL, is of particular interested to Pixalytics as we’ve previously been involved in a project to simulate NovaSAR-S data and so we’re excited to see what the actual data looks like. NovaSAR-S is a Synthetic Aperture Radar (SAR) mission using the S-Band, which will operate in a sun-synchronous orbit at an altitude of 580 km. It has four imaging modes:

  • ScanSAR mode with a swath width of 100 km at 20 m spatial resolution.
  • Maritime mode with a swath width of > 400 km and a spatial resolution of 6 m across the track and 13.7m along the track.
  • Stripmap mode with a swath width of 15-20 km and a spatial resolution of 6 m.
  • ScanSAR wide mode with a swath width of 140km and a spatial resolution of 30 m.

The data will be used for applications including flooding, disaster monitoring, forestry, ship tracking, oil spill, land cover use and classification, crop monitoring and ice monitoring. We’ve going to keep an eye out for its launch!

This is just the start of 2018, and we hope it’s piqued your interest in EO as it’s going to be an exciting year!

2 thoughts on “Earth Observation’s Flying Start to 2018

  1. Correction! NovaSAR is not on this launch – following the PSLV launch failure last year ISRO re-arranged the launch manifests and NovaSAR’s launch was postponed until after this one. CARBONITE-2 however IS on this launch 🙂

Leave a Reply

Your email address will not be published. Required fields are marked *

Time limit is exhausted. Please reload CAPTCHA.