Earth Observation’s Flying Start to 2018

Simulated NovaSAR-S data.

Earth Observation (EO) is taking off again in 2018 with a scheduled launch of 31 satellites next Friday, 12th January, from a single rocket by the Indian Space Research Organization (ISRO). The launch will be on the Polar Satellite Launch Vehicle (PSLV-40) from the Satish Dhawan Space Centre in Sriharikota, India. ISRO has history of multiple launches, setting the world record in February 2017 with 104 satellites in one go.

The main payload next week will be Cartosat-2F, also known as Cartosat-2ER. It is the next satellite in a cartographic constellation which focuses on land observation. It carries two instruments, a high resolution multi-spectral imager and a panchromatic camera. It’s data is intended to be used in urban and rural applications, coastal land use, regulation and utility management.

At Pixalytics we’re particularly excited about the Carbonite-2 cubesat built by Surrey Satellite Technology Ltd (SSTL) which is on this launch. .

Carbonite-2 is a prototype mission to demonstrate the ability to acquire colour video images from space. It has been developed by Earth-i and SSTL, and carries an imaging system capable of delivering images with a spatial resolution of 1 m and colour video clips with a swath width of 5 km. Earth-i have already ordered five satellites from SSTL, as the first element of a constellation that will provide colour video and still imagery for the globe enabling the moving objects such as cars, ships or aircraft to be filmed. These satellites are planned for launch in 2019.

However, this isn’t the only cubesat with an EO interest on next week’s launch. In addition, there are:

  • KAUSAT 5 (Korea Aviation University Satellite) will observe the Earth using an infrared camera and measure the amount of radiation from its Low Earth Orbit (LEO).
  • Parikshit is a student satellite project from the Manipal Institute of Technology in India that carries a thermal infrared camera, using 7.5-13.5 µm wavelengths, and will be used to monitor urban heat islands, sea surface temperature and the thermal distribution of clouds around the Indian subcontinent.
  • Landmapper-BC3, a commercial satellite from Astro Digital in the USA to provide multispectral imagery at 22 m spatial resolution with a swath width of 220 km
  • ICEYE-X1 is a SAR microsatellite from the Finnish company ICEYE which is designed to provide near real-time SAR imagery using the S-Band. ICEYE is a recent start-up company who have raised $17 m in venture capital funding in the last few years. They hope to have a global imaging constellation by the end of 2020.

Amongst the remaining cubesats, there are a couple of really intriguing ones:

  • CNUSail 1 (Chungnam National University Sail) is a solar sail experiment from Chungnam National University in South Korea. It aims to successfully deploy a solar sail in LEO and then to de-orbit using the sail membrane as a drag-sail. There has been a lot of discussion around solar sails from propulsion systems through to mechanisms to clear space debris, so it will be fascinating to see the outcome.
  • IRVINE01 is the culmination of a STEM project started in 1999 in six public high schools in Irvine, California, which has given students the experience of building, testing and launching a cubesat to inspire the next generation of space scientists. This is a fantastic project!

We’re also really excited about the launch of the NovaSAR-S cubesat, which was also originally planned to be on this launch (as reflected in the first version of this blog). It is going to be launched later this year. NovaSAR-S, also built by SSTL, is of particular interested to Pixalytics as we’ve previously been involved in a project to simulate NovaSAR-S data and so we’re excited to see what the actual data looks like. NovaSAR-S is a Synthetic Aperture Radar (SAR) mission using the S-Band, which will operate in a sun-synchronous orbit at an altitude of 580 km. It has four imaging modes:

  • ScanSAR mode with a swath width of 100 km at 20 m spatial resolution.
  • Maritime mode with a swath width of > 400 km and a spatial resolution of 6 m across the track and 13.7m along the track.
  • Stripmap mode with a swath width of 15-20 km and a spatial resolution of 6 m.
  • ScanSAR wide mode with a swath width of 140km and a spatial resolution of 30 m.

The data will be used for applications including flooding, disaster monitoring, forestry, ship tracking, oil spill, land cover use and classification, crop monitoring and ice monitoring. We’ve going to keep an eye out for its launch!

This is just the start of 2018, and we hope it’s piqued your interest in EO as it’s going to be an exciting year!

3 Ways Earth Observation is Tackling Food Security

Artist's rendition of a satellite - paulfleet/123RF Stock Photo

Artist’s rendition of a satellite – paulfleet/123RF Stock Photo

One of the key global challenges is food security. A number of reports issued last week, coinciding with World Food Day on the 16th October, demonstrated how Earth Observation (EO) could play a key part in tackling this.

Climate change is a key threat to food security. The implications were highlighted by the U.S. Geological Survey (USGS) report who described potential changes to suitable farmland for rainfed crops. Rainfed farming accounts for approximately 75 percent of global croplands, and it’s predicated that these locations will change in the coming years. Increased farmland will be available in North America, western Asia, eastern Asia and South America, whilst there will be a decline in Europe and the southern Great Plains of the US.

The work undertaken by USGS focussed on looking at the impact of temperature extremes and the associated changes in seasonality of soil moisture conditions. The author of the study, John Bradford said “Our results indicate the interaction of soil moisture and temperature extremes provides a powerful yet simple framework for understanding the conditions that define suitability for rainfed agriculture in drylands.” Soil moisture is a product that Pixalytics is currently working on, and its intriguing to see that this measurement could be used to monitor climate change.

Given that this issue may require farmers to change crops, work by India’s Union Ministry of Agriculture to use remote sensing data to identify areas best suited for growing different crops is interesting. The Coordinated Horticulture Assessment and Management using geoinformatics (CHAMAN) project has used data collected by satellites, including the Cartosat Series and RESOURCESAT-1, to map 185 districts in relation to the best conditions for growing bananas, mangos, citrus fruits, potatoes, onions, tomatoes and chilli peppers.

The results for eight states in the north east of the country will be presented in January, with the remainder a few months later, identifying the best crop for each district. Given that India is already the second largest producer of fruit and vegetables in the world, this is a fascinating strategic development to their agriculture industry.

The third report was the announcement of a project between the University of Queensland and the Chinese Academy of Sciences which hopes to improve the accuracy of crop yield predictions. EO data with an improved spatial, and temporal, resolution is being used alongside biophysical information to try to predict crop yield at a field scale in advance of the harvest. It is hoped that this project will produce an operational product through this holistic approach.

These are some examples of the way in which EO data is changing the way we look at agriculture, and potential help provide improved global food security in the future.

Earth Observation Looking Good in 2017!

Artist's rendition of a satellite - paulfleet/123RF Stock Photo

Artist’s rendition of a satellite – paulfleet/123RF Stock Photo

2017 is looking like an exciting one for Earth Observation (EO), judging by the number of significant satellites planned for launch this year.

We thought it would be interesting to give an overview of some of the key EO launches we’ve got to look forward to in the next twelve months.

The European Space Agency (ESA) has planned launches of:

  • Sentinel-2B in March, Sentinel-5p in June and Sentinel-3B in August – all of which we discussed last week.
  • ADM-Aeolus satellite is intended to be launched by the end of the year carrying an Atmospheric Laser Doppler Instrument. This is essentially a lidar instrument which will provide global measurements of wind profiles from ground up to the stratosphere with 0.5 to 2 km vertical resolution.

From the US, both NASA and NOAA have important satellite launches:

  • NASA’s Ionospheric Connection Explorer (ICON) Mission is planned for June, and will provide observations of Earth’s ionosphere and thermosphere; exploring the boundary between Earth and space.
  • NASA’s ICESat-2 in November that will measure ice sheet elevation, ice sheet thickness changes and the Earth’s vegetation biomass.
  • In June NOAA will be launching the first of its Joint Polar Satellite System (JPSS) missions, a series of next-generation polar-orbiting weather observatories.
  • Gravity Recovery And Climate Experiment – Follow-On (GRACE_FO) are a pair of twin satellites to extend measurements from the GRACE satellite, maintaining data continuity. These satellites use microwaves to measure the changes in the Earth’s gravity fields to help map changes in the oceans, ice sheets and land masses. It is planned for launch right at the end of 2017, and is a partnership between NASA and the German Research Centre for Geosciences.

Some of the other launches planned include:

  • Kanopus-V-IK is a small Russian remote sensing satellite with an infrared capability to be used for forest fire detection. It has a 5 m by 5 m spatial resolution over a 2000 km swath, and is planned to be launched next month.
  • Vegetation and Environment monitoring on a New MicroSatellite (VENµS), which is partnership between France and Israel has a planned launch of August. As its name suggests it will be monitoring ecosytems, global carbon cycles, land use and land change.
  • KhalifaSat is the third EO satellite of United Arab Emirates Institution for Advanced Science and Technology (EIAST). It is an optical satellite with a spatial resolution of 0.75 m for the visible and near infrared bands.

Finally, one of the most intriguing launches involves three satellites that form the next part of India’s CartoSat mission. These satellites will carry both high resolution multi- spectral imagers and a panchromatic camera, and the mission’s focus is cartography. It’s not these three satellites that make this launch intriguing, it is the one hundred other satellites that will accompany them!

The Indian Space Research Organisation’s Polar Satellite Launch Vehicle, PSLV-C37, will aim to launch a record 103 satellites in one go. Given that the current record for satellites launched in one go is 37, and that over the last few years we’ve only had around two hundred and twenty satellites launched in an entire year; this will be a hugely significant achievement.

So there you go. Not a fully comprehensive list, as I know there will be others, but hopefully it gives you a flavour of what to expect.

It certainly shows that the EO is not slowing down, and the amount of data available is continuing to grow. This of course gives everyone working in the industry more challenges in terms of storage and processing power – but they are good problems to have. Exciting year ahead!