3 Ways Earth Observation is Tackling Food Security

Artist's rendition of a satellite - paulfleet/123RF Stock Photo

Artist’s rendition of a satellite – paulfleet/123RF Stock Photo

One of the key global challenges is food security. A number of reports issued last week, coinciding with World Food Day on the 16th October, demonstrated how Earth Observation (EO) could play a key part in tackling this.

Climate change is a key threat to food security. The implications were highlighted by the U.S. Geological Survey (USGS) report who described potential changes to suitable farmland for rainfed crops. Rainfed farming accounts for approximately 75 percent of global croplands, and it’s predicated that these locations will change in the coming years. Increased farmland will be available in North America, western Asia, eastern Asia and South America, whilst there will be a decline in Europe and the southern Great Plains of the US.

The work undertaken by USGS focussed on looking at the impact of temperature extremes and the associated changes in seasonality of soil moisture conditions. The author of the study, John Bradford said “Our results indicate the interaction of soil moisture and temperature extremes provides a powerful yet simple framework for understanding the conditions that define suitability for rainfed agriculture in drylands.” Soil moisture is a product that Pixalytics is currently working on, and its intriguing to see that this measurement could be used to monitor climate change.

Given that this issue may require farmers to change crops, work by India’s Union Ministry of Agriculture to use remote sensing data to identify areas best suited for growing different crops is interesting. The Coordinated Horticulture Assessment and Management using geoinformatics (CHAMAN) project has used data collected by satellites, including the Cartosat Series and RESOURCESAT-1, to map 185 districts in relation to the best conditions for growing bananas, mangos, citrus fruits, potatoes, onions, tomatoes and chilli peppers.

The results for eight states in the north east of the country will be presented in January, with the remainder a few months later, identifying the best crop for each district. Given that India is already the second largest producer of fruit and vegetables in the world, this is a fascinating strategic development to their agriculture industry.

The third report was the announcement of a project between the University of Queensland and the Chinese Academy of Sciences which hopes to improve the accuracy of crop yield predictions. EO data with an improved spatial, and temporal, resolution is being used alongside biophysical information to try to predict crop yield at a field scale in advance of the harvest. It is hoped that this project will produce an operational product through this holistic approach.

These are some examples of the way in which EO data is changing the way we look at agriculture, and potential help provide improved global food security in the future.

GOES-R Goes Up!

Artist impression of the GOES-R satellite. Image courtesy of NASA.

Artist impression of the GOES-R satellite. Image courtesy of NASA.

On Saturday, 19th November, at 10.42pm GMT the Geostationary Operational Environmental Satellite-R Series (GOES-R) is due to be launched from Cape Canaveral in Florida, USA.

The GOES-R is a geostationary weather satellite operated by the National Oceanic & Atmospheric Administration (NOAA) Department of the US Government. It will the latest in the NOAA’s GOES series of satellites, and will take the moniker GOES-16 once it is in orbit, joining the operational GOES satellite constellation comprising of GOES-13, GOES-14 & GOES-15.

It will be put into a geostationary orbit at around 35 800 km above the Earth which will allow it to match the Earth’s rotation, meaning that it will effectively stay over a specific point on the Earth. It will be located approximately at 137 degrees West longitude, and through the constellation will provide coverage for North, Central and South America together with the majority of the Atlantic and Pacific Oceans.

Artists impression GOES-R satellite and its instruments. Image courtesy of NASA.

Artists impression GOES-R satellite and its instruments. Image courtesy of NASA.

The instrument suite aboard the satellite has three types: Earth facing instruments, sun facing instruments and space environment instruments.

Earth Facing Instruments: these are the ones we’re most excited about!

  • Advanced Baseline Imager (ABI) is the main instrument and is a passive imaging radiometer with 16 different spectral bands: two visible bands – Blue and Red with a spatial resolution of 0.5km, four near-infrared with spatial resolutions of 1 km; and ten infrared bands with a spatial resolution of 2 km. As its in a geostationary orbit its temporal resolution is extremely high with the full mode being where the Western Hemisphere is imaged every 5 – 15 minutes, whereas in its Mesocale mode (providing a 1000 km x 1000 km swath) the temporal resolution is only 30 seconds.
  • Geostationary Lightning Mapper (GLM) is, as the name suggests, an instrument that will measure total lightning, and both in-cloud and cloud-to-ground lightning across the Americas. It is an optical imager with a single spectral band of 777.4 nm which can detect the momentary changes in the optical scene caused by lightning. The instrument has a spatial resolution of approximately 10 km.

Sun Facing Instruments

  • Extreme Ultraviolet and X-ray Irradiance Sensors (EXIS) instrument has two sensors to monitor solar irradiance in the upper atmosphere; these are the Extreme Ultraviolet Sensor (EUVS) and the X-Ray Sensor (XRS).
  • Solar Ultraviolet Imager is a telescope monitoring the sun in the extreme ultraviolet wavelength range.

Space Environment Monitoring Instruments

  • Space Environment In-Situ Suite (SEISS) consists of four sensors:
    • Energetic Heavy Ion Sensor (EHIS) to measure the proton, electron, and alpha particle fluxes at geostationary orbit.
    • Magnetospheric Particle Sensor (MPS) is a magnetometer measuring the magnitude and direction of the Earth’s ambient magnetic field; and has two sensors the MPS-LO and MPS-HI.
    • Solar and Galactic Proton Sensor (SGPS) will, as the name indicates, measure the solar and galactic protons found in the Earth’s magnetosphere.
  • Magnetometer will measure of the space environment magnetic field that controls charged particle dynamics in the outer region of the magnetosphere.

The ABI instrument is the most interesting to us in terms of Earth observation, and it will produce a remarkable 25 individual products including Aerosol Detection, Cloud and Moisture Imagery, Cloud Optical Depth, Cloud Particle Size Distribution, Cloud Top Measurements, Derived Motion Winds & Stability Indices, Downward Shortwave Radiation at the Surface, Fire/Hot Spotting, Hurricane Intensity Estimation, Land Surface Temperature, Moisture & Vertical Temperature Profiles, Rainfall Rate, Reflected Shortwave Radiation at the Top Of Atmosphere, Sea Surface Temperature, Snow Cover, Total Precipitable Water and Volcanic Ash. If you want to look at the details of specific products then there are Algorithm Theoretical Basis Documents (ABTDs) available, which are like a detailed scientific paper, and can be found here.

The GOES-R is the first in a series of four satellites to provide NOAA with improved detection and observation of environmental events. It is not a cheap series of satellite, with the cost of developing, launching and operating this series estimated to be around $11 billion. However, this will provide observations up to 2036.

We’re excited by this launch, and are looking forward to being able to utilise some of this new generation weather information.