Flip-Sides of Soil Moisture

Soil Moisture changes between 19th and 25th August around Houston, Texas due to rainfall from Hurricane Harvey. Courtesy of NASA Earth Observatory image by Joshua Stevens, using soil moisture data courtesy of JPL and the SMAP science team.

Soil moisture is an interesting measurement as it can be used to monitor two diametrically opposed conditions, namely floods and droughts. This was highlighted last week by maps produced from satellite data for the USA and Italy respectively. These caught our attention because soil moisture gets discussed on a daily basis in the office, due to its involvement in a project we’re working on in Uganda.

Soil moisture can have a variety of meanings depending on the context. For this blog we’re using soil moisture to describe the amount of water held in spaces between the soil in the top few centimetres of the ground. Data is collected by radar satellites which measure microwaves reflected or emitted by the Earth’s surface. The intensity of the signal depends on the amount of water in the soil, enabling a soil moisture content to be calculated.

You can’t have failed to notice the devastating floods that have occurred recently in South Asia – particularly India, Nepal and Bangladesh – and in the USA. The South Asia floods were caused by monsoon rains, whilst the floods in Texas emanated from Hurricane Harvey.

Soil moisture measurements can be used to show the change in soil saturation. NASA Earth Observatory produced the map at the top of the blogs shows the change in soil moisture between the 19th and 25th August around Houston, Texas. The data is based on measurements acquired by the Soil Moisture Active Passive (SMAP) satellite, which uses a radiometer to measure soil moisture in the top 5 centimetres of the ground with a spatial resolution of around 9 km. On the map itself the size of each of the hexagons shows how much the level of soil moisture changed and the colour represents how saturated the soil is.

These readings have identified that soil moisture levels got as high as 60% in the immediate aftermath of the rainfall, partly due to the ferocity of the rain, which prevented the water from seeping down into the soil and so it instead remained at the surface.

Soil moisture in Italy during early August 2017. The data were compiled by ESA’s Soil Moisture CCI project. Data couresy of ESA. Copyright: C3S/ECMWF/TU Wien/VanderSat/EODC/AWST/Soil Moisture CCI

By contrast, Italy has been suffering a summer of drought and hot days. This year parts of the country have not seen rain for months and the temperature has regularly topped one hundred degrees Fahrenheit – Rome, which has seventy percent less rainfall than normal, is planning to reduce water pressure at night for conservation efforts.

This has obviously caused an impact on the ground, and again a soil moisture map has been produced which demonstrates this. This time the data was come from the ESA’s Soil Moisture Climate Change Initiative project using soil moisture data from a variety of satellite instruments. The dataset was developed by the Vienna University of Technology with the Dutch company VanderSat B.V.

The map shows the soil moisture levels in Italy from the early part of last month, with the more red the areas, the lower the soil moisture content.

Soil moisture is a fascinating measurement that can provide insights into ground conditions whether the rain is falling a little or a lot.

It plays an important role in the development of weather patterns and the production of precipitation, and is crucial to understanding both the water and carbon cycles that impact our weather and climate.

GOES-R Goes Up!

Artist impression of the GOES-R satellite. Image courtesy of NASA.

Artist impression of the GOES-R satellite. Image courtesy of NASA.

On Saturday, 19th November, at 10.42pm GMT the Geostationary Operational Environmental Satellite-R Series (GOES-R) is due to be launched from Cape Canaveral in Florida, USA.

The GOES-R is a geostationary weather satellite operated by the National Oceanic & Atmospheric Administration (NOAA) Department of the US Government. It will the latest in the NOAA’s GOES series of satellites, and will take the moniker GOES-16 once it is in orbit, joining the operational GOES satellite constellation comprising of GOES-13, GOES-14 & GOES-15.

It will be put into a geostationary orbit at around 35 800 km above the Earth which will allow it to match the Earth’s rotation, meaning that it will effectively stay over a specific point on the Earth. It will be located approximately at 137 degrees West longitude, and through the constellation will provide coverage for North, Central and South America together with the majority of the Atlantic and Pacific Oceans.

Artists impression GOES-R satellite and its instruments. Image courtesy of NASA.

Artists impression GOES-R satellite and its instruments. Image courtesy of NASA.

The instrument suite aboard the satellite has three types: Earth facing instruments, sun facing instruments and space environment instruments.

Earth Facing Instruments: these are the ones we’re most excited about!

  • Advanced Baseline Imager (ABI) is the main instrument and is a passive imaging radiometer with 16 different spectral bands: two visible bands – Blue and Red with a spatial resolution of 0.5km, four near-infrared with spatial resolutions of 1 km; and ten infrared bands with a spatial resolution of 2 km. As its in a geostationary orbit its temporal resolution is extremely high with the full mode being where the Western Hemisphere is imaged every 5 – 15 minutes, whereas in its Mesocale mode (providing a 1000 km x 1000 km swath) the temporal resolution is only 30 seconds.
  • Geostationary Lightning Mapper (GLM) is, as the name suggests, an instrument that will measure total lightning, and both in-cloud and cloud-to-ground lightning across the Americas. It is an optical imager with a single spectral band of 777.4 nm which can detect the momentary changes in the optical scene caused by lightning. The instrument has a spatial resolution of approximately 10 km.

Sun Facing Instruments

  • Extreme Ultraviolet and X-ray Irradiance Sensors (EXIS) instrument has two sensors to monitor solar irradiance in the upper atmosphere; these are the Extreme Ultraviolet Sensor (EUVS) and the X-Ray Sensor (XRS).
  • Solar Ultraviolet Imager is a telescope monitoring the sun in the extreme ultraviolet wavelength range.

Space Environment Monitoring Instruments

  • Space Environment In-Situ Suite (SEISS) consists of four sensors:
    • Energetic Heavy Ion Sensor (EHIS) to measure the proton, electron, and alpha particle fluxes at geostationary orbit.
    • Magnetospheric Particle Sensor (MPS) is a magnetometer measuring the magnitude and direction of the Earth’s ambient magnetic field; and has two sensors the MPS-LO and MPS-HI.
    • Solar and Galactic Proton Sensor (SGPS) will, as the name indicates, measure the solar and galactic protons found in the Earth’s magnetosphere.
  • Magnetometer will measure of the space environment magnetic field that controls charged particle dynamics in the outer region of the magnetosphere.

The ABI instrument is the most interesting to us in terms of Earth observation, and it will produce a remarkable 25 individual products including Aerosol Detection, Cloud and Moisture Imagery, Cloud Optical Depth, Cloud Particle Size Distribution, Cloud Top Measurements, Derived Motion Winds & Stability Indices, Downward Shortwave Radiation at the Surface, Fire/Hot Spotting, Hurricane Intensity Estimation, Land Surface Temperature, Moisture & Vertical Temperature Profiles, Rainfall Rate, Reflected Shortwave Radiation at the Top Of Atmosphere, Sea Surface Temperature, Snow Cover, Total Precipitable Water and Volcanic Ash. If you want to look at the details of specific products then there are Algorithm Theoretical Basis Documents (ABTDs) available, which are like a detailed scientific paper, and can be found here.

The GOES-R is the first in a series of four satellites to provide NOAA with improved detection and observation of environmental events. It is not a cheap series of satellite, with the cost of developing, launching and operating this series estimated to be around $11 billion. However, this will provide observations up to 2036.

We’re excited by this launch, and are looking forward to being able to utilise some of this new generation weather information.