Algae Starting To Bloom

Algal Blooms in Lake Erie, around Monroe, acquired by Sentinel-2 on 3rd August 2017. Data Courtesy of ESA/Copernicus.

Algae have been making the headlines in the last few weeks, which is definitely a rarely used phrase!

Firstly, the Lake Erie freshwater algal bloom has begun in the western end of the lake near Toledo. This is something that is becoming an almost annual event and last year it interrupted the water supply for a few days for around 400,000 residents in the local area.

An algae bloom refers to a high concentration of micro algae, known as phytoplankton, in a body of water. Blooms can grow quickly in nutrient rich waters and potentially have toxic effects. Although a lot of algae is harmless, the toxic varieties can cause rashes, nausea or skin irritation if you were to swim in it, it can also contaminate drinking water and can enter the food chain through shellfish as they filter large quantities of water.

Lake Erie is fourth largest of the great lakes on the US/Canadian border by surface area, measuring around 25,700 square km, although it’s also the shallowest and at 484 cubic km has the smallest water volume. Due to its southern position it is the warmest of the great lakes, something which may be factor in creation of nutrient rich waters. The National Oceanic and Atmospheric Administration produce both an annual forecast and a twice weekly Harmful Algal Bloom Bulletin during the bloom season which lasts until late September. The forecast reflects the expected biomass of the bloom, but not its toxicity, and this year’s forecast was 7.5 on a scale to 10, the largest recent blooms in 2011 and 2015 both hit the top of the scale. Interestingly, this year NOAA will start incorporating Sentinel-3 data into the programme.

Western end of Lake Erie acquired by Sentinel-2 on 3rd August 2017. Data

Despite the phytoplankton within algae blooms being only 1,000th of a millimetre in size, the large numbers enable them to be seen from space. The image to the left is a Sentinel-2 image, acquired on the 3rd August, of the western side of the lake where you can see the green swirls of the algal bloom, although there are also interesting aircraft contrails visible in the image. The image at the start of the top of the blog is zoomed in to the city of Monroe and the Detroit River flow into the lake and the algal bloom is more prominent.

Landsat 8 acquired this image of the northwest coast of Norway on the 23rd July 2017,. Image courtesy of NASA/NASA Earth Observatory.

It’s not just Lake Erie where algal blooms have been spotted recently:

  • The Chautauqua Lake and Findley Lake, which are both just south of Lake Erie, have reported algal blooms this month.
  • NASA’s Landsat 8 satellite captured the image on the right, a bloom off the northwest coast of Norway on the 23rd July. It is noted that blooms at this latitude are in part due to the sunlight of long summer days.
  • The MODIS instrument onboard NASA’s Aqua satellite acquired the stunning image below of the Caspian Sea on the 3rd August.

Image of the Caspian Sea, acquired on 3rd August 2017, by MODIS on NASA’s Aqua satellite. Image Courtesy of NASA/NASA Earth Observatory.

Finally as reported by the BBC, an article in Nature this week proposes that it was a takeover by ocean algae 650 million years ago which essentially kick started life on Earth as we know it.

So remember, they may be small, but algae can pack a punch!

Ocean Colour Partnership Blooms

Landsat 8 Natural Colour image of Algal Blooms in Lake Erie acquired on 01 August 2014. Image Courtesy of NASA/USGS.

Landsat 8 Natural Colour image of Algal Blooms in Lake Erie acquired on 01 August 2014. Image Courtesy of NASA/USGS.

Last week NASA, NOAA, USGS and the US Environmental Protection Agency announced a $3.6 million partnership to use satellite data as an early warning system for harmful freshwater algae blooms.

An algae bloom refers to a high concentration of micro algae, known as phytoplankton, in a body of water. Blooms can grow quickly in nutrient rich waters and potentially have toxic effects. Shellfish filter large quantities of water and can concentrate the algae in their tissues, allowing it to enter the marine food chain and potentially causing a risk to human consumption. Blooms can also contaminate drinking water. For example, last August over 40,000 people were banned from drinking water in Toledo, Ohio, after an algal bloom in Lake Erie.

The partnership will use the satellite remote sensing technique of ocean colour as the basis for the early warning system.  Ocean colour isn’t a new technique, it has been recorded as early as the 1600s when Henry Hudson noted in his ship’s log that a sea pestered with ice had a black-blue colour.

Phytoplankton within algae blooms are microscopic, some only 1,000th of a millimetre in size, and so it’s not possible to see individual organisms from space. Phytoplankton contain a photosynthetic pigment visible with the human eye, and in sufficient quantities this material can be measured from space. As the phytoplankton concentration increases the reflectance in the blue waveband decreases, whilst the reflectance in the green waveband increases slightly. Therefore, a ratio of blue to green reflectance can be used to derive quantitative estimates of the concentration of phytoplankton.

The US agency partnership is the first step in a five-year project to create a reliable and standard method for identifying blooms in US freshwater lakes and reservoirs for the specific phytoplankton species, cyanobacteria. To detect blooms it will be necessary to study local environments to understand the factors that influence the initiation and evolution of a bloom.

It won’t be easy to create this methodology as inland waters, unlike open oceans, have a variety of other organic and inorganic materials suspended in the water through land surface run-off, which will also have a reflectance signal. Hence, it will be necessary to ensure that other types of suspended particulate matter are excluded from the prediction methodology.

It’s an exciting development in our specialist area of ocean colour. We wish them luck and we’ll be looking forward to their research findings in the coming years.