UK Government View On ESA and Space Industry

Artist's rendition of a satellite - paulfleet/123RF Stock Photo

Artist’s rendition of a satellite – paulfleet/123RF Stock Photo

This week we got a glimpse of the UK Government’s view on the space industry, with the publication of Satellites and Space: Government Response to the House of Commons Science & Technology Committee’s Third Report of Session 2016/17. The original report was published in June and contained a series of recommendations, to which the Government responded.

The timing is interesting for two reasons:

  • Firstly, it comes just before the European Space Agency (ESA) Ministerial Council taking place on Thursday and Friday this week in Lucerne. We highlighted the importance of this meeting in a recent blog.
  • Secondly, it has taken the Government five months to respond, something the Committee themselves were disappointed with.

The Government’s response has a number of insights into the future for the UK space industry. The full report can be seen here, but we wanted to pick out three things that caught our eye:

ESA
For us, and the ESA Ministerial, the most interesting comment was that the Government reaffirmed that the UK will remain a member of ESA after Brexit. It also noted that “The UK’s investment in the European Space Agency is an important part of our overall investment in space, from which we obtain excellent value.” Whilst the level of financial commitment to ESA won’t become clear until the Ministerial, the mood music seems positive.

Earth Observation
The role of the Space for Smarter Government Programme (SSGP) was highlighted, particularly in relation to helping the Department for Environment, Food and Rural Affairs use satellite data more. As part of SSGP we ran a successful Flood Mapping project during 2015/16. SSGP is running again this year, but given the importance placed on the programme on embedding space activities within Government it was disappointing not to see a further commitment beyond March 2017.

A business plan for a Government Earth Observation Service is currently being written, which is aimed at increasing the uptake of EO data within Government. We’ve not seen too much about this service yet, and will be very interested in the business plan.

Responding a question on harnessing the public interest in Tim Peake’s time in space, it was nice to see the work of the EO Detective highlighted. This is a fantastic project that raises awareness of the space industry in schools, and uses space/satellite imagery to help children explore topics such as climate change.

Small Satellites
“The Government intends to establish the UK as the European hub for low cost launch of small satellites.” It’s an interesting ambition; although it’s not completely clear what they mean by the term small satellites. As we described last week definitions are important.

On top of the three points above there were some words on funding for space related research; however these amounted to no more than an acknowledgement that various Government bodies will work together. There was also reference to the development of a new Space Growth Strategy, something we’ll talk more about in two weeks.

The Government’s response to this report was an interesting read, and whilst there are still a lot of unanswered questions it does hint at cautious optimism that they will support the space industry.

We were all on tenterhooks this week waiting the big announcements from the ESA Ministerial, and here are some of the headline outcomes:

  • Overall, ESA’s 22 member states plus Slovenia and Canada allocated €10.3 billion for space activities and programmes over the next five years. This includes an EO programme valued at €1.37 bn up until 2025.

Within this overall envelope, the UK has allocated €1.4 bn funding over five years, which equates to 13.5% of total. This includes:

  • €670.5 m for satellite technology including telecommunications, navigation and EO.
  • €376.4 m for science and space research
  • €82,4 m for the ExoMars programme.
  • €71 m for the International Space Station Programme
  • €22 m for innovate space weather missions

Our eye was, of course, drawn to the investment in EO and there is a little more detail, with the €670.5 m is:€60 m for the development of the commercial use of space data €228.8 m for environmental science applications and climate services through ESA’s EO programme, including:

  • Incubed – a new programme to help industry develop the Earth observation satellite technology for commercial markets
  • the Biomass mission to measure the carbon stored in the world’s forests
  • the Aeolus mission, measuring wind speed in three dimensions from space

Finally, it is worth noting Katherine Courtney, Chief Executive of the UK Space Agency, who commented, “This significant investment shows how the UK continues to build on the capability of the UK space sector and demonstrates our continuing strong commitment to our membership in the European Space Agency.”

Two Fantastic Remote Sensing Innovations

Aberdeenshire (Scotland) January 2016 flooding captured by Sentinel-1; Data courtesy of Copernicus/ESA

Aberdeenshire (Scotland) January 2016 flooding captured by Sentinel-1

Two academic remote sensing research announcements caught our eye this week. To be fair most remote sensing announcements catch our eye, but these two were intriguing as they are repurposing remote sensing techniques.

Remote Sensing the Human Body
Researchers at Kyoto University Centre of Innovation have developed a system based on spread-spectrum radar technology to remotely sense signals from the human body. They have focussed on heartbeats, although they acknowledge that other elements such as breathing and movement are also measured by the system. It uses a unique signal analysis algorithm to extract the beats of the heart from the radar signals, and then calculates the intervals to give the heartbeat.

Anyone who has ever needed to wear a Holter monitor for twenty-four or forty-eight hours will appreciate the advantage of having measurements taken remotely, in real time. In addition, under controlled conditions, the system has worked with a similar accuracy to an electrocardiographs (ECG). This will be music to the ears of regular ECG takers who know how much removing those sticky electrode pads can hurt!

This system is still at an early developmental stage and further testing and validation is necessary, but it offers a potential new use of remote sensing technology.

Remote Sensing & Social Media
Researchers from Pennsylvania State University have led a project developing an innovative way of combining social media and remote sensing. The research was undertaken on a flood in Boulder, Colorado in September 2013 with a particular focus on urban locations.

The team identified over 150,000 flood related tweets and used a cloud-based geo-social networking application called CarbonScanner, from The Carbon Project, to cluster the pictures from Twitter and Flickr to identify flooding hotspots. These were then used to obtain optical data, in this case from the high resolution commercial satellite Worldview 2 and the lower resolution, but freely available, Landsat 8.

A machine learning algorithm was developed to perform a semi-automated classification to identify individual pixels that contained water. As the data was optical it used the near infrared band as, due to its strong absorption, water is easily distinguishable from soil and vegetation. The researchers believe that this methodology has the potential to give emergency teams near real-time data, which could make live-saving differences to their work.

This is a particularly interesting development for us, given our current work on flood-mapping using synthetic aperture radar (SAR) data as part of the Space for Smarter Government Programme.

These two current examples show that remote sensing is an exciting, innovative and developing field, and one that is not solely related to Earth observation.